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Abstract

This report proposes the convergence anal-
ysis for the semi-cyclic gradient descent
(SCGD) algorithm under the setting of dis-
tributed learning with heterogeneous data.
For the strongly quasi-convex and smooth
objective function, we show that given n de-
vices, in order to achieve the € error, the
semi-cyclic gradient descent algorithm re-
quires (’)(%) rounds of communications. It
outperforms the performance of the tradi-
tional Federated Averaging (FedAvg) algo-
rithm which requires O(1) rounds for the
strongly convex and smooth objective func-
tion. Moreover, our theoretical results are
consistent with our numerical experiments.

1 Introduction

We focus on the distributed optimization algo-
rithms for the heterogeneous data, also known
as the federated learning (see [Li et al., 2019a],
[Yang et al., 2019, [Kairouz et al., 2019], etc.); it
generally considers the scenario where users’ data
is of high privacy and cannot be visited by other
users, but it still demands to train a machine learn-
ing model based on these local datasets. For exam-
ple, in [Hard et al., 2018], the language model used
to predict users’ next input was trained on users’ be-
havior dataset; users’ input behavior is highly private
so it should be avoided to upload related data to the
server; besides the data privacy, it is also important
to deal with the heterogeneity of dataset.

The heterogeneity of dataset comes from the diver-
sity among users; it is reasonable to assume the
data belongs to different user would have differ-
ent distribution. There are many well-studied al-
gorithms specially designed to solve this problem,
such as Federated SVRG ([Konecny et al., 2016]),
Federated Averaging ([McMahan et al., 2016]), Fed-
Prox ([Liet al., 2018]), etc. Moreover, the influ-

ence of data heterogeneity has been studied in
[Li et al., 2019b] and [Khaled et al., 2019]; this kind
of heterogeneity leads to an asymptotic error term
with dependence on the degree of heterogeneity which
is non-vanishing and usually large for the heteroge-
neous data.

In more realistic setting, the distributed algorithm
should not only consider the heterogeneity of data
distribution, but also the heterogeneity of respond-
ing time. Specifically, users may live in the different
time zone so the activity of their devices are forced
to follow a specific time pattern. For example, usu-
ally people’s devices are charging and connected to
Wi-Fi at the night; to avoid influence users’ experi-
ence, the model training cannot be proceeded dur-
ing the daytime. Related setting has been considered
in [Bonawitz et al., 2019] and [Eichner et al., 2019|,
and usually applies semi-cyclic gradient-based algo-
rithm. Also, [Eichner et al., 2019] point it out that
the fixed sampling pattern may lead the gradient-
based algorithm to suffer much worse convergence
performance than the uniform sampling scheme, so
they suggest to modify this algorithm to the multi-
task learning.

However, the examples given in [Eichner et al., 2019]
and [Woodworth et al., 2018] rely on select-
ing a relatively large learning rate; so their
lower bound of semi-cyclic SGD can not be
consistent with the existing result of SGD
with cyclic sampling ([HaoChen and Sra, 2018§],
[Safran and Shamir, 2019] and [Ying et al., 2018] for
the worst-case cyclic sampling; [Jain et al., 2019],
[Nguyen et al., 2020], [Safran and Shamir, 2019
and [Rajput et al., 2020] for cyclic sampling with
random reshuffle). This motivates us to build a
non-asymptotic upper bound for the semi-cyclic
gradient-based algorithm.

Structure of Report The report mainly includes
three parts: In Section we introduce the basic
notations and two algorithms (FedAvg and SCGD)
which we will compare in this report. In Section



we give the non-asymptotic convergence analysis
for the SCGD algorithm and compare it with the
non-asymptotic upper bound of FedAvg algorithm;
we conclude SCGD theoretically outperforms FedAvg
with sufficiently small learning rate. Then we give the
convergence rate of SCGD under diminishing step-
size; and it is also faster than the FedAvg algorithm.
In Section [d] we numerically verify our statement by
applying FedAvg and SCGD to the classical linear
regression problem; we conclude SCGD in practice
can also outperform FedAvg with sufficiently small
learning rate or with diminishing learning rate.

2 Setup and Related Works

To formulate the distributed learning setting, we as-
sume a dataset is distributed to n devices. And we
aim to minimize the following objective function

n

FO) =23 fi0)i= Y f(6:0)

where z; is the local dataset in the i-th device, and
fi(0) := f(6;x;) represents the loss evaluated at x;
when the model parameter is set to be 6. Here we
introduce two algorithms we will compare in this re-
port.

Federated Averaging (FedAvg) Federated av-
eraging algorithm, also known as FedAvg, is
broadly used in practice ([McMahan et al., 2016],
[Hard et al., 2018], etc.). It includes two main steps

e Broadcast: it distributes the model parame-
ter to the sampled active devices; usually, the
number of sampled devices is much smaller than
the total number of devices and should be de-
termined before training. Then the local device
updates the parameter using the local data for
multiple steps.

e Aggregation: After each selected device com-
pletes the local training procedure, the updated
parameter will be sent back to the central server.
The central server computes the average of all
returned parameters; it will be used in the next
step of broadcast.

Based on the current convergence upper bound for
the strongly convex and smooth objective function
(|Li et al., 2019D]), the best possible result for the Fe-
dAvg algorithm can achieve a sublinear convergence
rate 0(%) with diminishing stepsize, and can achieve
exponential convergence but with a non-vanishing
O(n)-level asymptotic error, where T is the number
of communications and 7 is the fixed learning rate.

Semi-Cyclic Gradient Descent (SCGD) The
SCGD algorithm is the natural generalization of tra-
ditional gradient decent algorithm to the distributed
optimization problem. When it is unable to simulta-
neously visit all of observations, we can visit each
local dataset in a fixed order. It is usually used
to deal with the pattern of devices responding time
([Eichner et al., 2019]). We describe the details of
SCGD in Algorithm[I] Currently, as far as we know,
there is no convergence analysis for the SCGD.

2.1 Assumptions

First, we make the p-strongly quasi-conver as-
sumptions for the objective function as used
in [Gower et al., 2019)]. This assumption has
been discussed in [Necoara et al., 2019] and
[Karimi et al., 2016]; it generalizes the tradi-
tional strongly convex assumption. Note that it
doesn’t require the convexity and the uniqueness
of minimizer, and it also works for a large class
of non-convex functions. We give an example of
pu-strongly quasi-convex function without convexity

in Appendix

Assumption 2.1 (p-strong quasi-convexity). The
objective function F : RY — R is p-strongly quasi-
convex; that is, there exists p > 0 such that for all
0 € R? and 6* = proje- (),

F(6") ~ F(6) = (VF(0),6" —6) + T |lo — "]

where it is also assumed ©* := argming g F(0) ex-
ists and the projection operator is defined as

projg« : 0 — arg min(6, 6*).
0*cO*

By quasi-convexity, the set of global minimizers is
always convex, so the projection operator is well-
defined. Next, we have the following standard as-
sumption on each component:

Assumption 2.2 (L-Lipschitz continuous gradient).
Each component f;(0) has L-Lipschitz continuous
gradient; that is, for all 0,0 € R, there exists L > 0
such that

IV £i(6) = V£:(6")] < L6 — 6.

Note that we do not assume the convexity on
each component; they can be non-convex or con-
cave. However, we note that for the FedAvg al-
gorithm, the convexity of each component is neces-
sary (|Li et al., 2019b] assumes each component is
strongly convex; and [Khaled et al., 2019] assumes



Algorithm 1 Semi-Cyclic Gradient Descent

1: Set 9?’0 as the initial parameter, n as the learning rate, and K,,x as the maximum iterations.

> & # & for i #

2: Generate the device list {&1,...,&,}.

3: for K from 0 to K.« do

4: for ¢ from 1 to n do

5 Broadcast the parameter 9 v to the device &;.
6 for j from 0 to £ — 1 do

7: Local update: 0, = 0, —nV fe, (0F))
8 end for

9 end for

10 Set 0 = 0K,

11: end for

each component is convex); and we also give an ex-
ample that FedAvg will diverge when there are some
components are concave (see Appendix [C|) while the
convergence analysis for SCGD still holds for this
case. Lastly, to characterize the heterogeneity among
the data set, we define the local gradient noise at i-th
device as

of = sup [[Vfi(6")]>.
0*co*

And we further require the following mild assump-
tion:

Assumption 2.3 (Finite gradient noise). For alli €
{1,2,...,n}, the local gradient noise is finite; that is

O’?<OO.

We note that if the set of minimizers is compact, the
smoothness automatically implies this assumption.

3 Main Results

3.1 Main Lemmas

The following lemmas would be used in proving our
main results:

Lemma 3.1. Under Assumption and
the semi-cyclic gradient descent algorithm starts from
the initial point Gfo and runs for n rounds of com-

munications. Moreover, assume the learning rate n
satisfies
c
< — 1
NS 1)

where C' is given by

aL2— 42 )
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Then

1
distg,. (075 < (1 — SHnEn) - distg- (01)

41%n 3E3 3 n
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Proof. See Appendix [A] O

Lemma 3.2 (Chung’s lemma). Let up, > 0 be a se-
quence of real numbers. Given two positive real num-
ber a > 2 and b > 0; assume there exists ko such

that
b

a
7)uk + ﬁ

upr1 < (1 - v

holds for all kg > k. Then

b
lim sup k%u, < —— < 00.
k—o0 -2

Remark. This well-known lemma is borrowed from

Lemma 2.1 in [Girbuzbalaban et al., 2015].  See
Lemma 4 in [Chung, 1954] for a proof.
3.2 Non-Asymptotic Analysis with

Constant Learning Rate

In this section, we give the non-asymptotic upper
bound for a fixed constant learning rate as follows:

Theorem 3.3. Under Assumption[2.1], and[2.3,
the semi-cyclic gradient descent algorithm starts from
the initial point 69 o and runs for T rounds of commu-
nication such that each device has been visited for K
times (that is, T = nK ). If the learning rate satisfies

(3)

< —
= nk

where C' is given by @, then

1
Edistg. (1) < (1—§;mE77) - Edist,. (67 )
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Proof. By Lemma

1
Edistg- (019 ") < (1 — ) - Edist,- (1)

4L2 3E33 n
+ Z 2,

Unrolling this inequality, we obtain

1
Edistg,. (1) < (1 — g,mEn)K - Edist- (69 )

12L2 2E2 2 i 2
[

Remark. The first term represents the dependence
on the initialization; with the number of communi-
cations T increasing, this term exponentially tends
to zero. The second term is the asymptotic error,
which is always non-vanishing. Unlike the FedAvg al-
gorithm which asymptotic error is of O(n)-level, the
SCGD algorithm has asymptotic error of O(n?)-level.
This property makes it possible to achieve a higher
precision when the learning rate is sufficiently small.

Heterogeneity of Data Distribution As given
in the Theorem [.3] the asymptotic error term
depends on the local gradient noise %Z?zl o2
this result is consistent with the FedAvg algorithm
([Khaled et al., 2019] and [Li et al., 2019b]), and also
reveals the phenomenon where higher heterogeneity
would make it more difficult to achieve the desired
precision. And the dependence of heterogeneity can
be removed by applying the diminishing step-size; see
more discussion in Section 3.3

Choice of E For the fixed maximum communica-
tion rounds T', we set the learning rate
logT

T

for some constant ¢ such that holds. Then we
have

E”9K+1

n==«:

0| < T~ 57 -E[6} o
12L2£2 1 i 2
It is easy to notice that if we set E to be large, the

first term will be smaller, but the error term will be
worse. To balance both terms, the optimal choice of

F is to set A
e<[3)
ul

that means, E is set to be the smallest integer such
that £ > 7.

n?E?( log T)?

e-Time Complexity Under the optimal setting,
we have

log(T)*n?

E[07" ~ )
T

02 = O
To achieve an € error, this setting requires O(%)
rounds of communications. For the traditional Fed-
erated Averaging algorithm, it requires O(%) rounds
of communications for the strongly convex objective
function ([Li et al., 2019b]). It means the semi-cyclic
gradient descent algorithm can outperform the tra-
ditional algorithms under some scenarios, especially
when a high-precision is required.

3.3 Asymptotic Analysis with Dimin-
ishing Learning Rate

We just show that with sufficiently small learning
rate, the SCGD algorithm can have smaller asymp-
totic error. Usually, it is preferred to use diminishing
step-size in FedAvg algorithm (see [Li et al., 2019b])
to avoid the influence of large local gradient noise
caused by heterogeneity; therefore, in this subsection,
we theoretically show that in this case SCGD can also
outperform FedAvg with respect to the convergence
speed.

Theorem 3.4. Under Assumption[2.1], and[2.3,
the semi-cyclic gradient descent algorithm starts from
the initial point 0 o and runs for T rounds of com-
munication such that each device has been visited for
K times (that is, T = nK ). Moreover, assume the
learning rate ng := 12 satisfies

1
g,unEno > 2.

Then
lim sup K*Edistg. (9{{0

K—o0

) < oo.

Proof. Since ng := 42, there always eletb Ky such
that for all K > Kj, the condition is satisfied.
Then by Lemma |3.1}

. 1 1 .
Edistg. (07 ") < (1 - B - ) - Edistg- (05,)
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we obtain

lim sup k*Edist3. (07) < <.

K—oo

O

Heterogeneity of Data Distribution Note that
with diminishing step-size, the optimizer iteration
can exactly reach the minimizer set ©*, while SCGD
with a constant step-size always oscillates around ©*.

Convergence Rate Theorem [3.4] shows that with
the diminishing learning rate, the distance between
the iteration 61 and the minimizer set is decreasing
with rate ) )

n
=) = 0(75)
for the smooth and strongly quasi-convex objective
function. As given in [Li et al., 2019b], FedAvg can
only achieve O(4) convergence rate with the same di-
minishing setting for the smooth and strongly convex
objective function.

o(

4 Numerical Experiments

In this section, we set up a numerical experiment to
verify our statements. The basic setting is to solve
the linear regression problem: given a data set (X, y)
where X € R"* is the feature matrix and y € R"
is the response, we assume there is a linear relation
between X and y and aim to find the relation by
solving the optimization problem

min ly — X3*.

BERE
The distributed learning environment is constructed
as follows: First, assume there are 1000 observations
in total; the whole data set is divided into 20 devices
randomly (each device may have different number of
observations). Next, we generate the local data set
using the normal random variables with the dimen-
sion 8. Lastly, we evaluate the performance of both
algorithms using the mean square error (MSE).

Sufficiently small constant learning rate First,
we compare the convergence error of both algorithms
under the sufficiently small learning rate. For the op-
timizer, we set the learning rate to be n = 1075 and
set the number of local updates to be £ = 4. For
the FedAvg algorithm, we assume there are 15% de-
vices active for each communication (that is, for each
communication round, the central server can visit 3
devices in our setting). For the SCGD algorithm, we

only require 5% devices active (that is, for each com-
munication round, the central server can only visit
1 device). Note that for a fixed constant learning
rate, both algorithms cannot achieve the exactly min-
imizer of the objective function under the distributed
setting.

Both algorithms run for 10000 rounds of communi-
cations and are evaluated the MSE after each round.
The difference error curve is shown in Figure [T} where
the y-axis is the difference of MSE for two algorithms;
more explicitly, is computed as

MSEFedavg — MSEscep,

where MSEpeqave is the MSE of FedAvg, and
MSEgscap is the MSE of SCGD. When the difference
at the round ¢ is larger than 0, it represents that the
loss of SCGD is smaller than the loss of FedAvg at
the round ¢. And we repeat the experiment for same
initialization for 100 times; the upper curve and the
lower curve are 95% percentile and 5% percentile, re-
spectively.

As shown in Figure[I] by setting a sufficiently small
learning rate n = 1072, the SCGD always has smaller
errors after 6000 rounds of communications, so it ver-
ifies our theoretical result.
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Figure 1: Sufficiently Small Constant Learning Rate

Diminishing learning rate Second, we compare
the convergence of both algorithms under diminish-
ing learning rate. We follow the same distributed
linear regression problem, instead of setting a small
constant learning rate, we set a relatively large one
no = 1073 and decrease it whenever all devices have
been visited once by setting

_ "o
NK K

where K := % Figure |2/ shows that SCGD converges
faster than FedAvg under diminishing learning rate;
it is consistent with our Theorem [3.41
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Figure 2: Diminishing Learning Rate

5 Conclusion
Lastly, we summarize this work below.

e First, we build the non-asymptotic upper bound
of the SCGD algorithm. It concludes that with
a sufficient small learning rate, the semi-cyclic
gradient descent can achieve (’)(%) complexity
while the FedAvg algorithm can only achieve
O(1) complexity.

e Second, we give the asymptotic convergence
analysis of the SCGD algorithm. It shows the

2

convergence rate of SCGD is O(%z) while that

of the FedAvg algorithm is O(7).

e Third, we show that the convergence analysis
of SCGD is built on a more general setting
(strongly quasi-convex objective function), and
we do not require the convexity on components;
however, a counterexample is given to show that
the convexity of each component is necessary for
the FedAvg algorithm.

e Lastly, our empirical experiments show that the
asymptotic error of SCGD algorithm is signifi-
cantly smaller than the FedAvg algorithm when
the learning rate 7 is sufficiently small. And with
a diminishing learning rate, the SCGD algorithm
also converges faster than the Fed Avg algorithm.
These results are consistent with our two main
theorems.
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A Proof of Lemma [3.1]

In this lemma, we quantify how much the model parameter § becomes closer to the set of minimizers after
every device has been visited for once. Based on the Algorithm [T} we have
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Set 0 = proje- (0 ;). Subtract 6* and take square on both sides.
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where we use Jensen’s inequality in the second step; more explicitly, by the convexity of || - ||,
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Moreover, we require the learning rate sufficiently small such that
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Now let T} := [|6f) — 0* — nEnVEF(0f)|? and Ty := > 7" | Z ||Vf51( 55) = Ve, (080)]1>. We bound Ty
and Tb respectively
e We bound T; as follows:
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and p-strongly quasi-convexity of F'
* * M *
(VE(015), 075 — 0%) = F(0150) — F(6*) + §||9fo - 0|%.

in the inequality step. Note that since F(Hfo) — F(6*) is always non-negative so we omit it.

e Now we bound T5.
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Finally, we get

L*n*E? 2 2 nK s I~
15 < T2 2 ! 217|607 — 07| "‘ﬁ;‘%‘

Combine T; and T5.

K+1 |2 1 — unEn + L*n*E*p? zi 2 L*n’E® ) K _ p*||2
H‘9 -0 ” S 1 + 2L 2.2 2 2 ||9 ¢ H
1—sunkEn iz 1—-2L%n?E?.n
2n° L?n3E3 9
T T2 R 'ﬁ;"i

Then we require
a) 1—LiunEn>1
b) 1-— 2L2n2E2772 >

1
2

¢) 1— sunEn+2(L? - w En?E*n* + 4L SndE3 <1— funEn



And the requirements above with are equivalent to

where C is given by

1 112 402 — 12 2 AL — 2
C'_mm{QL’\/24L4+< 6o ") T e M

Finally, due to 8* = projg- (Hfo), we obtain
fog 2 K K *
distg- (0767) < |11 — 67|

n

1 . 4L n3E3 3
<(@1- glmEn)H@fo —0 H2 Z ;

1 _ ALY 1O
=(1- g,unEn) ~dlst%*(9ffo) Z ol

B Example: p-strongly quasi-convex but non-convex

Consider the following one-dimensional function

= r<
2 L r<1

Fay={""" 2 =0 (6)
loggc 1<x§%
222 +log(3) -1 >3

Obviously, it is a non-convex function since its Hessian on (1, 3] is strictly negative definite. And the
minimizer set is © = (—oo, 3]. It sufﬁces to verify the p-strong quasi-convexity on [3,+00). (And in this

case we always have 6* = projg- (0) = 3). For z € [$,1],
1, 1 w1,
@) > (22— 1)(= — Ble— 2
1@ )2 (G2 -
holds for all x4 € (0,2]. And for z € [1, 5]
1_ L 1
_ _1 > 2 - _ 2
ogr > S——+ oz —2)%
holds for all 1z € (0,3 —log(§)]. For z € [, 00),
1 2, 3014 1 o1,
S22 loe(SY 4+ = > (= — Ll O
1o Tleelg)ry = grgm gl
also holds for all yu € (0, 2 —log(9)].
Therefore, we show that F(z) is p-strongly quasi-convex with x4 = 5 —log(2) & 0.02240.

C Example: Divergence of FedAvg with Concave Components

Let F(z) = £ 30, fi(z) where fi(z) = fa(z) = —2? and f3(z) = 323, Set the initialization zo = 1, learning
rate n = 0.1, and the number of local updates £ = 2. For the FedAvg algorithm, we assume all devices
can be visited in one communication round. Then after one round, the local parameter on the first two
devices becomes (1) = 2(2) = 1.44, the local parameter on the third device become z(3) = 0.16. So their
aggregation is 1 = % > 1. In the next round, the averaged parameter will keep leaving from the
global minima z* = 0. And for the SCGD algorithm, after three rounds of communications, the tracking
parameter becomes 0.331776, which verifies our Theorem [3.3]
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