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Backgrounds

• Final year PhD student in EE (University of Utah).

• M.A. Degree in Statistics (UC Santa Barbara).

• B.S. Degree in Statistics (Sichuan University).

Research Fields

• Optimization and Stochastic Approximation : I re-investigate
unreasonable theoretical assumptions based on practical
needs.

• Reinforcement Learning : I design data-efficient algorithms that
are substantiated with theoretical guarantees.
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Optimization and

Stochastic Approximation



Challenges from Real-World: Non-IID Data

Example (Federated Learning)

The data points x(i ) and x(j ) in FL come
from different devices.

x(i ) ∼ X (i ),x(j ) ∼ X (j )

Each device may have non-identical
distribution.

Figure 1: Illustration of
Federated Learning

3



Challenges from Real-World: Non-IID Data

Example (Reinforcement Learning)
The data point (st ,at ,rt ,st+1) in RL comes
from a trajectory:

s1,a1,r1,s2,a2,r2, . . .

Not ind. + Non-identical distribution.
Figure 2:

Agent-Environment
Interaction
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Solutions to Non-IID Data

Characterization of Data Dependency: We use the mixing
coefficient to measure the data dependency.

Definition

• {àt }t : a process with a stationary distribution Þ.

• �(àt+k ∈ ·|Ft ): the dist. of àt+k cond. on Ft .
• dTV: the total variation distance.

The process {àt }t is called æ-mixing if

æ(k )︸︷︷︸
mixing coef.

:= sup
t∈�,A∈Ft

2dTV

(
�(àt+k ∈ ·|A ),Þ

)
→ 0,

as k →∞.
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Solutions to Non-IID Data

Example (Highly-Dependent Dataset)

• High-frequency trading;

• stock prices (B-S model with jumps);

• defaultable bonds (CIR Diffusion);

• digital currency (most noisy market).

Convergence of SGD over Dependent Data

SGD Mini-batch SGD

Weakly dependent; æ(k ) ∼ e−k Õ (ê−2) O (ê−2)

Medium dependent; æ(k ) ∼ 1
kÚ

, Ú ≥ 1. O (ê−2− 2
Ú ) Õ (ê−2)

Highly dependent; æ(k ) ∼ 1
kÚ

, 0 < Ú < 1. O (ê−2− 2
Ú ) O (ê−1− 1

Ú )

Table 1: Using a larger batch size is always helpful for dependent data1.

1Ma, S., et al. ”Data Sampling Affects the Complexity of Online SGD over Dependent
Data.” UAI 2022. 6



Future Works on Non-IID Data

• Federated Learning on Non-IID Data

• Optimization theory without accessing the private data in each
device.

• Cybersecurity Problems

• Attacks generated from an adaptive adversarial attacker forms a
Non-IID dataset.

• Large Language Models/Multi-Modal Models

• Videos and speeches naturally form Non-IID Non-Stationary
datasets.
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Figure 3: Adversarial Attacking

Figure 4: Gibbon
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Challenges from Real-World: Non-Differentiability

Example (Air Flow Prediction)
Most of existing physical simulators
(Matlab, SU2, etc.) are not
differentiable or require additional
efforts to implement differentiability.

Figure 5: Simulation of Air Flow
near an Airfoil

Solution: We propose the hybrid model2:

• optimize non-differentiable params using zeroth-order method;

• optimize neural network using standard optimizer.

2Ma, S., et al. ”End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box
PDE Solver.” NeurIPS 2023 (ML4PS Workshop)
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Challenges from Real-World: Non-Differentiability

Figure 6: Physic-Informed GCN Model for Fluid Flow Prediction
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Bilevel/Minimax Optimization

We also focus on more complicated optimization problem:

Standard Opt. Problem min
x∈X

f (x)

Minimax Opt. Problem min
x∈X

max
y∈Y

f (x ,y)

Applications: Adversarial Attacking3, Reinforcement Learning4, etc.

3Chen, Ziyi, Shaocong Ma, and Yi Zhou. ”Accelerated Proximal Alternating
Gradient-Descent-Ascent for Nonconvex Minimax Machine Learning.” IEEE ISIT 2022.
4Chen, Ziyi, Shaocong Ma, and Yi Zhou. ”Sample efficient stochastic policy

extragradient algorithm for zero-sum markov game.” ICLR 2021.
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Reinforcement Learning



Efficient Algorithms in Reinforcement Learning

Key challenges in RL: Expensive Agent-Environment Interaction; e.g.
Self-driven car.

Solutions: Propose efficient algorithms with optimal sample
complexity.

• Policy Evaluation5: Quantify the performance of an agent.

• Optimal Control6: Learn the best strategy in a specific task.

• Solve the Equilibrium of Stochastic Games7: Learn the best
strategy in a competitive environment.

5Ma, Shaocong, Yi Zhou, and Shaofeng Zou. ”Variance-Reduced Off-Policy TDC
learning: Non-Asymptotic Convergence Analysis.” NeurIPS 2020.
6Ma, S., et al. ”Greedy-GQ with Variance Reduction: Finite-Time Analysis and

Improved Complexity.” ICLR 2021.
7Chen, Ziyi, Shaocong Ma, and Yi Zhou. ”Finding correlated equilibrium of constrained

Markov game: A primal-dual approach.” NeurIPS 2022.
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Robust Algorithms in Reinforcement Learning

Key challenges in RL: Environment is changing over time; e.g.
Self-driven car.

Solutions: Let the agent consider the worst-case environment.

• Solve the Robust Equilibrium of Stochastic Games8: Quantify the
performance of an agent.

8Ma, S., et al. ”Decentralized Robust V-Learning for Solving Markov Games with Model
Uncertainty.” Submitted.
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Thank You!

Any Questions?
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