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Overview

1 Challenge 1: Non-Independent Data
Reduce the influence of data dependence
Classical optimization techniques on dependent data
Critical thinking: is data dependence always bad?

2 Challenge 2: Exploration-Exploitation Trade-Off
Quantify the error caused by lacking of exploration

3 Reference
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Challenges from RL: Non-Independent Data

Dataset in Reinforcement Learning

The data point (st , at , rt , st+1) in RL comes from a trajectory:

s1, a1, r1, s2, a2, r2, . . .
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Challenges from RL: Non-Independent Data

Dataset in Reinforcement Learning

The data point (st , at , rt , st+1) in RL comes from a trajectory:

s1, a1, r1, s2, a2, r2, . . .

{(si , ai , ri , si+1)} and {(sj , aj , rj , sj+1)} are non-independent!
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Ultimate Goal of RL Find a strategy π of selecting action to maximize
the future return:

max
π

Qπ(s, a) := E[
∞∑
t=1

γtrt |s, a]

Deep Q-Learning (DQN) with Target Network [DeepMind’13]

θk+1 ← arg min E
(s,a,r ,s′)∼µ

‖r + γmax
a′

Qθk (s ′, a′)− Qθ(s, a)‖2

︸ ︷︷ ︸
An optimization problem!

where µ is the stat. dist. of the stochastic process {(st , at , rt , st+1)}.
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Ultimate Goal of RL Find a strategy π of selecting action to maximize
the future return:

max
π

Qπ(s, a) := E[
∞∑
t=1

γtrt |s, a]

Deep Q-Learning (DQN) with Target Network [DeepMind’13]

θk+1 ← arg min E
(s,a,r ,s′)∼µ

‖r + γmax
a′

Qθk (s ′, a′)− Qθ(s, a)‖2

︸ ︷︷ ︸
An optimization problem!

where µ is the stat. dist. of the stochastic process {(st , at , rt , st+1)}.

Key difference: non-independent data
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A general question Solve the optimization problem

min
x

Eξ∼µf (x ; ξ)

given a stochastic process {ξt}. How does it influence the optimization?

RL applications: (double) Q-learning, Actor-Critic, PPO, and etc.

Existing work [Agarwal’12] With a high-probability,

Eξ∼µf (x̄t ; ξ)−min
x

Eξ∼µf (x ; ξ)︸ ︷︷ ︸
opt. error

≤ O(
1√
t

) +O(

√
τ

t
+ φ(τ))︸ ︷︷ ︸

data dependence

,

where φ(τ) := supk supA∈Fk
dTV(P(ξτ+k ∈ ·|A), µ).
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Question How can we reduce the influence of data dependence?
Answer Just use a large batch size.

Our work [ICLR’22 - under review]

Data dependence level φ(k) SGD Mini-batch SGD

Geometric φ-mixing exp(−kθ),
O(ε−2(log ε−1)

2
θ ) O(ε−2)

(Weakly dependent) θ > 0

Fast algebraic φ-mixing k−θ,
O(ε−2− 2

θ ) Õ(ε−2)
(Medium dependent) θ ≥ 1

Slow algebraic φ-mixing k−θ,
O(ε−2− 2

θ ) O(ε−1− 1
θ )

(Highly dependent) 0 < θ < 1

How does this idea work?
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Reduce the variance:

(single) E‖f (x ; ξt)− Eξ∼µf (x ; ξ)‖2 ≈ O(1)

(mini-batch) E‖ 1

B

B∑
i=1

f (x ; ξt+i )− Eξ∼µf (x ; ξ)‖2 ≈ O(
1

B
)

Reduce the bias:

(single) Eξτ f (x ; ξτ )− Eξ∼µf (x ; ξ) ≈ φ(τ)

(mini-batch)
1

B

B∑
i=1

Eξτ+i
f (x ; ξτ+i )− Eξ∼µf (x ; ξ) ≈ 1

B

B∑
i=1

φ(τ + i)

Put them back to [Agarwal’12]:

opt. error ≤ O(
1√
tB

) +O(

√
τ

tB
+

1

B

B∑
i=1

φ(i))︸ ︷︷ ︸
data dependence

.
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Many RL problems have highly dependent data!

Markovian decision process admitting specific jump diffusion; e.g.
financial market, self-driving car, and etc.

Bad replay buffer; e.g.

{ξ1}, {ξ1, ξ2}, {ξ1, ξ2, ξ3}, . . . .

Exploration with a updating policy.
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Question What is the influence of data dependence on those classical
optimization techniques such as variance reduction?

Answer The performance of variance reduction is reduced.

Recap on Variance Reduction

(SGD) ∇f (x ; ξ)

(SVRG) ∇f (x ; ξ)−∇f (y ; ξ) + Eξ∼µ∇f (y ; ξ)

For IID data, they are both unbiased while SVRG has lower variance
when ‖x − y‖2 is small.

For Markovian data, the bias may dominates the error term.
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We apply the variance reduction technique to two existing gradient-based
RL algorithms: TD learning with gradient correction (TDC) and
Greedy-GQ algorithm.

Our work [NeurIPS’20]

TDC VR-TDC

IID Õ(ε−1) Õ(ε−
3
5 )

Markovian Õ(ε−1) Õ(ε−1)

Our work [ICLR’21]

Greedy-GQ VR-Greedy-GQ SVRG

Markovian Õ(ε−3) Õ(ε−2) -

IID - - O(ε−
5
3 )
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Question Does the data dependence always make the algorithm
perform worse?

Answer No. Sometimes, the dependence makes it better!

Our work [ICML’20]

The empirical risk minimization problem:

min
x

1

n

n∑
i=1

`i (x).

We show that sampling with reshuffle is better than IID sampling.
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Question How can we theoretically understand Exploration-Exploitation
trade-off?

Answer We need to quantify the error caused by lacking of exploration.

Our work [ICML’22 - To be submitted]

Given the off-line data D, what is the best performance achieved by
Q-learning?

Bound the gap to optimal value function:

(1− γ)Es∼µ0 [V ∗(s)− V π(K)
(s)]

≤ 2

1− γ

√
C · (εapprox +

1

|D|
) + 2γK‖Q∗ − Q(0)‖2,ν̃︸ ︷︷ ︸

Standard error of off-line Q-learning

+ M ·
K−1∑
k=0

γk
√
νK−k(Dc)︸ ︷︷ ︸

Exploration error

+M ·
K−1∑
k=0

γk
√
ν∗K−k(Dc)︸ ︷︷ ︸

Exploration error

.
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Greedy policy defined by a Q-function:

π(a|s) =

{
1 a = arg maxa∈AQ(s, a)

0 o.w.
.

π(k) is the greedy policy defined by the Q-function at k-th iteration.

State visitation measure of a policy π:

dπ := (1− γ)E
∞∑
i=0

γt1(st = s)

where {st} is generated via the policy π. And

νk := dπ
(k) ⊗ π(k)

is the greedy-policy state-action visitation measure;

ν∗k := dπ
(k) ⊗ π∗

is the optimal policy state-action visitation measure.
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Exploration error:

εexploration =
K−1∑
k=0

γk
√
νK−k(Dc) +

K−1∑
k=0

γk
√
ν∗K−k(Dc).

More efficient exploration strategy:

For each episode, it suffices to explore all possible state-action pairs
generated by the target greedy policy AND one-step action taken by
optimal policy.
Optimal exploration strategy: One-step Monte Carlo Tree Search.

More reasonable replay buffer design:

All state-action pairs generated by greedy-policy are important. Don’t
delete them until the next epoch.

. . .
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