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What is Zeroth-Order Optimization?

First-order optimization (e.g., gradient descent) uses:

∇f (x) to update x ← x − η∇f (x)

Zeroth-order optimization uses only function values:

Access to f (x) but not ∇f (x)

Especially useful when:

Gradients are unavailable or too expensive to compute
Objective is noisy, black-box, or non-differentiable

Key idea: Use function values to estimate the gradient.
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Estimating the Gradient with Function Values

Gradient estimation via finite differences:

∇f (x) ≈ f (x + hei )− f (x)

h
· ei

where ei is the i-th standard basis vector.

Or via random directions:

∇f (x) ≈ f (x + hu)− f (x)

h
· u

where u ∼ N (0, I ) or a random unit vector.

Choose a small h > 0 (step size or smoothing parameter).

This gives a stochastic estimate of the gradient using only function
evaluations.

Zeroth-Order Optimization October 9, 2025 3 / 11



Applications:

Many real-world optimization problems lack gradient information.

Examples:

Hyperparameter tuning
Adversarial attacks on neural networks

Gradient computation costs too much GPU memory.

Examples:

Large Language Model fine tuning.

Key idea: Optimize using only function evaluations.
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Application: Hyperparameter Tuning

Goal: Find hyperparameters x (e.g., learning rate, weight decay) that
minimize validation loss f (x).

Challenge: No gradient of validation loss w.r.t. hyperparameters.

Use zeroth-order estimate:

∇f (x) ≈ f (x + hu)− f (x)

h
· u

Example:

Sample u ∼ N (0, I ), perturb hyperparameters, evaluate validation loss.
Update x ← x − η · estimated gradient.

Note1: directly apply this approach usually cannot work. More practical

issues should be considered in practice.

1Koch, Patrick, et al. ”Autotune: A derivative-free optimization framework for
hyperparameter tuning.” Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 2018.
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Application: Adversarial Attacks on Neural Networks

Goal: Find small perturbation δ such that x + δ causes
misclassification.

Objective: Maximize f (δ) = loss(x + δ, ytarget), where gradient w.r.t.
δ may be unavailable (e.g., in black-box models).

Use zeroth-order estimate:

∇f (δ) ≈ f (δ + hu)− f (δ)

h
· u

Source: based on material from Ian Goodfellow, 2016.
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Application: Fine-tuning Large Language Models2

Goal: Update parameters x to minimize loss on task-specific data.

Computing gradients consumes too much memory for large models.

Example

Consider a two-layer linear neural network. x ∈ Rm, y1 ∈ Rn, y2 ∈ R.

y1 = Layer1(x) = W1x

y2 = Layer2(y1) = W2y1

Saved in the Layer2: ∂y2
∂y1

= W2 ∈ Rn

Saved in the Layer1: ∂y1
∂x = W1 ∈ Rn×m

2Malladi, Sadhika, et al. ”Fine-tuning language models with just forward passes.”
Advances in Neural Information Processing Systems 36 (2023): 53038-53075.
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Application: Fine-tuning Large Language Models

Example (Continue...)

Backpropagation (first-order): ∂y2
∂x = ∂y2

∂y1
∂y1
∂x = W2W1 (Both ∂y2

∂y1
and ∂y1

∂x
are used.)

Saved in the Layer2: Perturbed output (W2 + δ2)y1 ∈ R, Perturbed
vector δ2 ∈ Rn.

Saved in the Layer1: Perturbed output (W1 + δ1)x ∈ Rn, Perturbed
vector δ1 ∈ Rn×m.

Backpropagation (zeroth-order): ∂y2
∂x = (W2+δ2)y1−W2W1x

∥δ1∥ δ1 (Only δ1 is

used.)

Key idea: When updating the Layer2:

First-order: both W2 and W1 are saved in the memory

Zeroth-order: only δ2 are saved in the memory
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Application: Fine-tuning Large Language Models

Source: Malladi, Sadhika, et al. ”Fine-tuning language models with just
forward passes.” Advances in Neural Information Processing Systems 36
(2023): 53038-53075.
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Theoretical Analysis of Zeroth-Order Gradient Estimator

By applying the Taylor’s theorem to f (x + v):

f (x + µv) = f (x) + µ∇f (x)⊤v + o(µ2)

Solve ∇f (x):

vv⊤∇f (x) = f (x + µv)− f (x)

µ
+ o(µ)

By choosing appropriate vector v , f (x+µv)−f (x)
µ v can be an unbiased

estimator of ∇f (x) (as µ tends to 0).
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Theoretical Analysis of Zeroth-Order Gradient Estimator

f (x+µv)−f (x)
µ v needs to take two function evaluations.

f (x+µv)
µ v is still an unbiased estimator of ∇f (x) (as µ tends to 0).

f (x+µv)
µ ≈ ∇v f (x) (the directional derivative of f (x) along the

direction v).

However, the variance is infinite.
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