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Motivation

Traditional diffusion models are trained to maximize data likelihood.

However, real-world goals are often different:

Aesthetic quality (e.g., human preference)
Prompt-image alignment
Image compressibility

These objectives are hard to specify via prompts or likelihoods.

Key idea: formulate denoising as a multi-step decision process.

This enables reinforcement learning to directly optimize black-box
rewards.
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Why Not Supervised Fine-Tuning?

Reward is often non-differentiable or black-box:
Human preference scores (e.g., aesthetics)
VLM-based feedback (e.g., LLaVA descriptions)
File size after compression

No supervision during denoising steps:
Reward only applies to the final output x0
No ground-truth data for intermediate steps

Sampling-based generation = sequential decision process
Each step modifies the sample: xT → · · · → x0
RL can assign credit across this trajectory

Conclusion: RL is better suited for optimizing non-differentiable,
sample-level objectives.
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Goal of the Paper

Goal: Train diffusion models to satisfy arbitrary downstream
objectives.

Key insight: Treat the denoising process as a multi-step Markov
Decision Process (MDP).

Method: Propose DDPO (Denoising Diffusion Policy Optimization),
a policy gradient algorithm for optimizing diffusion models with
black-box rewards.

Result: Enables fine-tuning for tasks like aesthetic quality, alignment,
and compressibility without additional human labels or prompt
engineering.
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Key Applications

Improve image compressibility

Increase aesthetic quality

Enhance prompt-image alignment
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Preliminaries: Diffusion Models

Goal: model data distribution via a denoising process.

Forward process: gradually add noise to data x0 → xT .

Reverse process: learn to recover data by removing noise xT → x0.

Trained to minimize denoising loss (variational lower bound on
log-likelihood):

LDDPM = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t, c)∥2

]
Common in text-to-image generation (e.g., Stable Diffusion).
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Preliminaries: Reinforcement Learning

RL solves sequential decision-making problems.

Key elements:

States s, actions a, reward r(s, a), transitions P(s ′|s, a)
Agent learns a policy π(a|s) to maximize expected cumulative reward:

J(π) = Eπ

[∑
t

r(st , at)

]

In this paper: denoising steps ∼ actions, final image ∼ reward.
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Core Idea: Denoising as a Markov Decision Process (MDP)

Key idea: model the diffusion sampling process as a multi-step
decision process.

Each denoising step becomes an RL timestep:

State: st = (xt , t, c) Action: at = xt−1

Policy: πθ(at |st) = pθ(xt−1|xt , c)
Transition: deterministic, xt−1 becomes new state at t − 1

Reward: only at final step:

r(st , at) =

{
r(x0, c), if t = 0

0, otherwise

This formulation allows applying policy gradient methods to train
diffusion models.
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Reward Functions

Compressibility: JPEG file size

Aesthetics: LAION-predicted score

Prompt alignment: LLaVA + BERTScore
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DDPO Samples
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Prompt-Image Alignment via VLMs
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Sample Improvements

Figure: Visual effects of DDPO finetuning (Prompt alignment)
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Overoptimization Risks

Overfitting reward functions can degrade output quality

Add KL-penalty or use early stopping
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Conclusion

DDPO is a powerful framework for RL-trained diffusion

Enables optimization of diverse, meaningful reward functions

Generalizes across prompts without new data
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Similarity to DDPO

Aspect DDPO (Black et al., 2024) DPOK (Fan et al., 2023)
MDP For-
mulation
(same)

Multi-step MDP:
State: (c , t, xt)
Action: xt−1

Reward: only at t = 0

Multi-step MDP:
State: (z , xt)
Action: xt−1

Reward: only at t = T − 1
Policy Defi-
nition (same)

π(at | st) = pθ(xt−1 | xt , c) πθ(at | st) = pθ(xt−1 |
xt , z)

Reward
Source

JPEG compressibility,
Aesthetic score (LAION),
VLM + BERTScore

ImageReward model
trained from human feed-
back

Table: Comparison of DDPO and DPOK: MDP formulation, policy structure, and
reward signal.
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Difference

Policy Gradient estimation:

(same, policy gradient theorem) r · ∇ log pθ

(difference) DPOK contains the gradient of KL divergence.

Practical implementation: PPO.
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Other Differences to DDPO

Aspect DDPO (Black et al., 2024) DPOK (Fan et al., 2023)
KL Regular-
ization

Optional; PPO-style clip-
ping used for stability

Essential; KL divergence
between fine-tuned and pre-
trained model is a core reg-
ularizer

Tasks Compressibility / Incom-
pressibility,
Aesthetic optimization,
Prompt-image alignment

Color, count, composition,
location,
Bias correction (e.g.,
”Four roses” as flower not
whiskey)

Model Used Stable Diffusion v1.4 Stable Diffusion v1.5 with
LoRA

Table: Comparison of DDPO and DPOK: KL regularization, tasks, and base
model.

Shaocong Ma Fine-Tuning Diffusion Models Using Reinforcement LearningOctober 9, 2025 19 / 28



Motivation

Text-to-image diffusion models often fail on fine-grained details:

Object count, color, spatial composition

Learning from human feedback (LHF) improves alignment with user
intent

Supervised fine-tuning struggles with data quality and overfitting

Key idea: Use online reinforcement learning to optimize
feedback-trained reward functions
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Goal of the Paper

Goal: Fine-tune diffusion models using online RL to optimize human
preference-based rewards

Method: Propose DPOK – Policy gradient with KL regularization

Result: Outperforms supervised methods on alignment and image
quality
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Supervised vs. RL Fine-Tuning (Figure 1)
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MDP Formulation of Denoising

Treat diffusion process as Markov Decision Process (MDP):

st = (z , xT−t), at = xT−t−1

Policy: πθ(at |st) = pθ(xt−1|xt , z)
Deterministic transition, reward only at t = 0: r(x0, z)

RL objective:
min
θ

Ez

[
Epθ(x0|z)[−r(x0, z)]

]
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KL Regularization (Main difference)

Prevent overfitting to reward by penalizing deviation from pre-trained
model

Use upper bound of KL divergence (Lemma 4.2):

KL(pθ(x0|z)∥ppre(x0|z)) ≤
∑
t

KL(pθ(xt−1|xt , z)∥ppre(xt−1|xt , z))

Final RL objective:

Epθ(x0:T |z)[−αr(x0, z) + β
∑
t

KL]

Shaocong Ma Fine-Tuning Diffusion Models Using Reinforcement LearningOctober 9, 2025 24 / 28



Qualitative Comparison (Figure 2)
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Quantitative Evaluation (Figure 3)
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Conclusion

DPOK is a robust framework for RL fine-tuning of diffusion models

Combines reward feedback and KL regularization

Outperforms supervised methods on alignment and quality

Demonstrates potential of RLHF in generative modeling
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Thank You!

Shaocong Ma Fine-Tuning Diffusion Models Using Reinforcement LearningOctober 9, 2025 28 / 28


