Introduction to XGBoost

March 13, 2019

Introduction to XGBoost

March 13, 2019 1 / 30

1 Preliminary: Objective Functions

Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Definition (Objective Functions)

 $\theta\in\Theta$ - the parameter space.

$$Obj(heta) = L(heta) + \Omega(heta)$$

- L: Loss function measures how well model fit on training data
- Ω: Regularization measures complexity of model

Example (Objective Function for Ridge Regression)

 $\beta \in \mathbb{R}^n$. λ is a constant number.

$$Obj(\beta) = \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2$$

Preliminary: Objective Functions

Preliminary: Regression Trees (CARTs)

A Brief Introduction

- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

How do we use **Classification And Regression Tree (CART)** to regress or classify?

Example (Regression Tree)

Every regression tree T has the following form:

$$\hat{y}_i = \sum_{m=1}^M \omega_m \mathbf{1}_{x \in R_m}.$$

Two Elements completely determine a regression tree:

- Partition of Sample Space $\{R_1, \ldots, R_M\}$,
- **2** and Weights Vector $\omega = (\omega_1, \ldots, \omega_M)$.

Example (Regression Tree: Revisit)

Given a partition of sample space $\{R_1, \ldots, R_M\}$. For every sample point x, there must exist $n \in \{1, 2, \ldots, M\}$ such that $x \in R_n$. Define

$$q: x \mapsto n,$$

which describes the partition $\{R_1, \ldots, R_M\}$.

 \implies re-write regression tree as

$$T = \omega_q$$

Preliminary: Objective Functions

Preliminary: Regression Trees (CARTs)
A Brief Introduction

Generate Regression Tree

Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Generate Regression Tree

Problem: Given N observations (x_i, y_i) , i = 1, 2, ..., N. We want to build a regression tree such that

$$L = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

is minimized.

Solution: Notice the following fact:

Given q, there is unique $\hat{\omega}$ such that L is minimized.

$$\hat{\omega}_m = \frac{1}{|R_m|} \sum_{x_i \in R_m} y_i$$

:= avg R_m $m = 1, \dots, M$.

Because of the fact, our problem become: **How to find the best tree structure** *q***? Answer:** We generate the tree from top to bottom.

Example (Generate a regression tree)

Define $R_{j,s} = \{X \mid X_j \le s\}$. Solve the following optimization problem:

$$\min_{j,s} \quad (\sum_{x_i \in R_{j,s}} (y_i - \operatorname{avg} R_{j,s})^2 + \sum_{x_i \notin R_{j,s}} (y_i - \operatorname{avg} R_{j,s}^c)^2)$$

How to solve it: s is choosen from $\{x_{ij}\}_{i=1,...,N}$. Enumerate every pair (j, s). Then we will add a split at each subnode of the first node. But when the submode of the first node.

Preliminary: Objective Functions

Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Pre-Stopping: We can stop adding a new spit when ...

- max_depth
- min_child_weight
- gamma
- ...

< 🗗 🕨

э

Pruning

Suppose we have a partition into M regions R_1, \ldots, R_M . Tree T is built on the partition.

Definition (Loss funtion)

Let
$$N_m = |R_m|$$
, $\hat{\omega}_m = \operatorname{avg} R_m$, and $Q_m(T) = \frac{1}{|R_m|} \sum_{x_i \in R_m} (y_i - \hat{\omega}_m)^2$.

$$L(T) := \sum_{m=1}^{|T|} N_m Q_m(T).$$

Definition (Complexity of our model)

Given a constant $\alpha.$ Define

$$\Omega(T) = \alpha |T|.$$

< □ > < □ > < □ > < □ >

Problem: We have built a large tree T_0 . Find a subtree T_{α} such that

$$C_{\alpha}(T) = L(T) + \Omega(T)$$
$$= \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

is minimized.

Solution: Let $\mathfrak{N} \in T^{\circ} := \{ All \text{ internal nodes of } T \}$. The operator

$$\sigma_{\mathfrak{N}}: T \mapsto \sigma_{\mathfrak{N}}T$$

collapses the node \mathfrak{N} to get the subtree $\sigma_{\mathfrak{N}}T$.

Solving the following optimization problem

$$\min_{\mathfrak{N}\in\mathcal{T}^{\circ}} \quad (L(\mathcal{T})-L(\sigma_{\mathfrak{N}}\mathcal{T}))$$

we get $\tilde{\mathfrak{N}}$.

Now let's begin from \mathcal{T}_0 . We successively collapse node and finally get a sequence of subtrees

$$\{\sigma_{\tilde{\mathfrak{N}}_0} T_0, \sigma_{\tilde{\mathfrak{N}}_1} \sigma_{\tilde{\mathfrak{N}}_0} T_0, \ldots, \{\mathfrak{R}\}\},\$$

where \mathfrak{R} is the root of T_0 . Find T_{α} such that the value of $(L(T) - L(\sigma_{\mathfrak{N}}T))$ is the smallest in this set.

Preliminary: Objective Functions

2 Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Definition (Tree Ensemble Model)

Given a fixed sample point $x_i = (x_{i1}, \ldots, x_{in})$, our model will predict:

$$\hat{y}_i = \sum_{k=1}^t f_k(x_i),$$

where f_k is a CART, for each k.

Question: How to find parameters $\{f_1, \ldots, f_t\}$ of this model? **Answer:** Define an objective function, and optimize it!.

Preliminary: Objective Functions

2 Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Tree Boosting

Aim: Find all parameters $\{f_1, \ldots, f_S\}$ of our model

$$\hat{y} = \sum_{k=1}^{S} f_k(x).$$

Method: We'll find f_k one by one. Assume we have a part of our model:

$$\hat{y}_i^{(t-1)} = \sum_{j=1}^{t-1} f_j(x_i).$$

We want to find the t-th parameter in the space of all CARTs

$$\Theta = \{f_1^{(t)}, \ldots, f_K^{(t)}, \ldots\}.$$

We construct the following optimization problem to find f_t :

$$\min_{f_t \in \Theta} \quad Obj^{(t)}(f_t) = L^{(t)}(f_t) + \Omega(f_t)$$

Preliminary: Objective Functions

2 Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

$L^{(t)}$ - Loss Function

Re-Write Loss Function $L^{(t)}$:

$$\begin{split} L^{(t)}(f_t) &= \sum_{j=1}^N I(y_j, \hat{y}_j^{(t)}) \\ &= \sum_{j=1}^N I(y_j, \hat{y}_j^{(t-1)} + f_t(x_j)). \end{split}$$

Definition (Objective Function $Obj^{(t)}$)

$$Obj^{(t)}(f_t) = \sum_{j=1}^{N} I(y_j, \hat{y}_j^{(t-1)} + f_t(x_j)) + \Omega(f_t) + \sum_{k=1}^{t-1} \Omega(f_k)$$

Note: It is hard to minimize it. We need a simlified version of loss.

э

(日)

Taylor Expansion Approximation of Loss

Notice that for the *j*-th sample point

$$I(y_j, \hat{y}_j^{(t-1)} + f_t(x_j)) \approx I(y_j, \hat{y}_j^{(t-1)}) + g_j f_t(x_j) + \frac{1}{2} h_j f_t^2(x_j),$$

where
$$g_j = \partial_{\hat{y}^{(t-1)}} I(y_j, \hat{y}^{(t-1)})$$
 and $h_j = \partial_{\hat{y}^{(t-1)}}^2 I(y_j, \hat{y}^{(t-1)})$.

Definition (Loss Function)

$$L^{(t)}(f_t) = \sum_{j=1}^{N} (l(y_j, \hat{y}_j^{(t-1)})) + \sum_{j=1}^{N} (g_j f_t(x_j) + \frac{1}{2} h_j f_t^2(x_j))$$

Note: $\sum_{j=1}^{N} (I(y_j, \hat{y}_j^{(t-1)}))$ doesn't depend on f_t .

Ω - Complexity of CART

We re-write a given CART T as follow

$$T(x) = \omega_{q(x)}.$$

Note: Every CART *T* is determined by two element:

- q the structure of T
- ω the weights of each leaf of T

Definition

Given constants γ and λ , we define

$$\Omega(T) = \gamma |T| + \frac{1}{2}\lambda \sum_{j=1}^{|T|} w_j^2$$

Revisit: Objective Function

Definition (Final Objective Function)

Set ...

$$I_j = \{\}$$

$$Obj^{(t)}(f_t) \approx \sum_{j=1}^{N} (g_j f_t(x_j) + \frac{1}{2} h_j f_t^2(x_j)) + \gamma |T| + \frac{1}{2} \lambda \sum_{j=1}^{|T|} w_j^2$$

= $\sum_{j=1}^{|f_t|} [(\sum_{i \in I_j} g_i) \omega_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) \omega_j^2] + \gamma |f_t|$
:= $\sum_{j=1}^{|f_t|} [\underline{G_j \omega_j + \frac{1}{2} (H_j + \gamma) \omega_j^2}] + \gamma |f_t|$

э

Definition (Final Objective Function)

$$Obj^{(t)}(f_t) = \sum_{j=1}^{|f_t|} [G_j \omega_j + \frac{1}{2} (H_j + \gamma) \omega_j^2] + \gamma |f_t|$$

Note: Given a tree structure q, we can immediately get a CART minimizing $Obj^{(t)}$, by setting $\omega_j = -\frac{G_j}{H_j + \lambda}$. And with the same q,

$$Obj^{(t)}(f_t) = -rac{1}{2}\sum_{j=1}^{|f_t|}rac{G_j^2}{H_j+\lambda} + \gamma |f_t|.$$

Preliminary: Objective Functions

2 Preliminary: Regression Trees (CARTs)

- A Brief Introduction
- Generate Regression Tree
- Pre-Stopping and Pruning

3 The Model of XGBoost: Tree Ensembles

Tree Ensembles

- Preparation
- Objective Function
- Train Our Model

Reminder of Our Aim: Find all parameters $\{f_1, \ldots, f_S\}$ of our model

$$\hat{\gamma} = \sum_{k=1}^{S} f_k(x).$$

Method: We construct the following optimization problem to find t-th parameter f_t :

$$\min_{f_t\in\Theta} \quad Obj^{(t)}(f_t) = \sum_{j=1}^{|f_t|} [G_j\omega_j + \frac{1}{2}(H_j + \gamma)\omega_j^2] + \gamma|f_t|.$$

(日) (四) (日) (日) (日)

Similar to generate a CART, it suffices to find **the best tree structure** q. **Note:** To get q_{new} , we add two nodes \mathfrak{N}_L and \mathfrak{N}_R at \mathfrak{N} of q_{old} . Define

$$\begin{aligned} \text{Gain} &= Obj^{(t)}(q_{\text{old}}) - Obj^{(t)}(q_{\text{new}}) \\ &= \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma \end{aligned}$$

We add a new split with the highest value of Gain.

Pre-Stopping We can stop adding a new split when

- Gain is nagetive.
- Reach the maximum depth.
- ...
- **Post-Prunning**

- CARTs part refers to this classical textbook. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Edition. Chapter 9.
- XGBoost refers to Tianqi Chen's slide, Introduction to Boosted Trees.

https:

//homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

and to this document,

http://xgboost.readthedocs.io/en/latest/model.html