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Abstract

This note further generalizes the applicability of Freedman’s inequality from the martingales to
any dependent process. Based on the construction given in ( ), we consider the
influences of dependency, which allows the desired generalization.

1 Freedman’s Inequality

The proof strategy follows Theorem 3.2, ( ).
Lemma 1.1. For every A € (0, 5], there exists some choices of ¢ = c(\, o) such that
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where A = X + cX2a.. More explicitly, if A = i, then ¢ = 2.

Proof. Notice that the equation cA? = % is a quadratic function of c¢. To show that it has at least one
root, it suffices to show its discriminant is not less than 0, that is

(200 — 2)0?)% — 4\%a? > 0.
This obviously holds when A € (0, 5-]. O
Lemma 1.2 (Supermartingale construction). Let {d;}jen, be an adaptive process with respect to the

filtration F. Suppose vj_1 > 0 for j € Ny are F;_i-measurable random variables. Assume there exists
a sequence {Ci} admitting a split Cy = Ey — Ey_q for an increasing positive sequence {E:} such that
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is a supermartingale with respect to F, where o := sup, ;.



Proof. We want to construct a supermartingale with respect to the filtration F. Here started from the
construction {U,} provided in ( ):
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where the second equality comes from the measurability of {d;};<; and {vj_1};<:, and the third
equality holds by inserting the definition of U;_;. Plugging the condition (1) (the upper bound of
E [exp (Ady) ’.7-},1]), we can further obtain:
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Divided by exp [Et ()\ + c)\Za)] on both sides, the inequality becomes
(A4 eX2a)? N2
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where to make the equality hold, we set A = (A + cA2a). It concludes that {e_E‘()‘+C)‘2“)Ut} is a
supermartingale with respect to F. O
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Theorem 1.3 (Freedman). Let {d;};en, be an adaptive process with respect to the filtration F. Suppose
vj—1 > 0 for j € Ny are F;_i-measurable random variables. Assume there exists a sequence {C}
admitting a split Cy = Ey — Ey_1 for an increasing positive sequence {E:} such that
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for all A > 0. Then for any o; > 0 and 8 > 0,
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holds for all X € (0, 5~], where o := sup; o
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Proof. Define the stopping time .7 := min{¢ : Z;Zl d; >z and Z;Zl vj_1 < Z;Zl a;d; + B}
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where the last inequality applies the Chernoff’s inequality. By Lemma 1.1, there exists ¢ such that
c\? = )‘2—2 Then the following bound holds:
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Then we obtain the final bound:
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