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Abstract

This note further generalizes the applicability of Freedman’s inequality from the martingales to
any dependent process. Based on the construction given in Harvey et al. (2019), we consider the
influences of dependency, which allows the desired generalization.

1 Freedman’s Inequality

The proof strategy follows Theorem 3.2, Harvey et al. (2019).

Lemma 1.1. For every λ ∈ (0, 1
2α ], there exists some choices of c = c(λ, α) such that

cλ2 =
λ̃2

2
,

where λ̃ = λ+ cλ2α. More explicitly, if λ = 1
2α , then c = 2.

Proof. Notice that the equation cλ2 = λ̃2

2 is a quadratic function of c. To show that it has at least one
root, it suffices to show its discriminant is not less than 0, that is

(2αλ3 − 2λ2)2 − 4λ6α2 ≥ 0.

This obviously holds when λ ∈ (0, 1
2α ].

Lemma 1.2 (Supermartingale construction). Let {dj}j∈N+
be an adaptive process with respect to the

filtration F . Suppose vj−1 ≥ 0 for j ∈ N+ are Fj−1-measurable random variables. Assume there exists
a sequence {Ct} admitting a split Ct = Et − Et−1 for an increasing positive sequence {Et} such that

E[eλdt |Ft−1] ≤ exp

(
Ctλ+

λ2

2
vj

)
(1)

for some λ > 0. Let λ̃ = (λ+ cλ2α). Define

Ut = exp

 t∑
j=1

(λ+ cλ2αj)dj −
t∑

j=1

λ̃2

2
vj−1

 .

Then {
e−Et(λ+cλ2α)Ut

}
is a supermartingale with respect to F , where α := supj αj.
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Proof. We want to construct a supermartingale with respect to the filtration F . Here started from the
construction {Ut} provided in Harvey et al. (2019):

E[Ut | Ft−1] = E

exp

 t∑
j=1

(λ+ cλ2αj)dj −
t∑

j=1

λ̃2

2
vj−1

∣∣∣∣∣Ft−1


= exp

t−1∑
j=1

(λ+ cλ2αj)dj −
t∑

j=1

λ̃2

2
vj−1

E
[
exp

(
(λ+ cλ2αt)dt

) ∣∣Ft−1]
= Ut−1 exp

(
− λ̃

2

2
vt−1

)
E
[
exp

(
(λ+ cλ2αt)dt

) ∣∣Ft−1] ,
where the second equality comes from the measurability of {dj}j≤t and {vj−1}j≤t, and the third
equality holds by inserting the definition of Ut−1. Plugging the condition (1) (the upper bound of
E
[
exp (λdt)

∣∣Ft−1]), we can further obtain:

E[Ut | Ft−1] = Ut−1 exp

(
− λ̃

2

2
vt−1

)
E
[
exp

(
(λ+ cλ2αt)dt

) ∣∣Ft−1]
≤ Ut−1 exp

[
Ct
(
λ+ cλ2α

)
+

(
(λ+ cλ2α)2

2
− λ̃2

2

)
· vt−1

]

= Ut−1 exp
[
(Et − Et−1)

(
λ+ cλ2α

)]
exp

[(
(λ+ cλ2α)2

2
− λ̃2

2

)
· vt−1

]

Divided by exp
[
Et
(
λ+ cλ2α

)]
on both sides, the inequality becomes

E[e−Et(λ+cλ2α)Ut | Ft−1] ≤ e−Et−1(λ+cλ2α)Ut−1 · exp

[(
(λ+ cλ2α)2

2
− λ̃2

2

)
· vt−1

]
≤ e−Et−1(λ+cλ2α)Ut−1,

where to make the equality hold, we set λ̃ = (λ + cλ2α). It concludes that {e−Et(λ+cλ2α)Ut} is a
supermartingale with respect to F .

Theorem 1.3 (Freedman). Let {dj}j∈N+ be an adaptive process with respect to the filtration F . Suppose
vj−1 ≥ 0 for j ∈ N+ are Fj−1-measurable random variables. Assume there exists a sequence {Ct}
admitting a split Ct = Et − Et−1 for an increasing positive sequence {Et} such that

E[eλdt |Ft−1] ≤ exp

(
Ctλ+

λ2

2
vj

)
(2)

for all λ > 0. Then for any αj ≥ 0 and β > 0,

P

 T⋃
t=1


t∑

j=1

dj ≥ x and

t∑
j=1

vj−1 ≤
t∑

j=1

αjdj + β


 ≤ exp(ET

(
λ+ cλ2α

)
) · exp(−λx+ cλ2β),

holds for all λ ∈ (0, 1
2α ], where α := supj αj.
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Proof. Define the stopping time T := min{t :
∑t
j=1 dj ≥ x and

∑t
j=1 vj−1 ≤

∑t
j=1 αjdj + β}.

P

 T⋃
t=1


t∑

j=1

dj ≥ x and

t∑
j=1

vj−1 ≤
t∑

j=1

αjdj + β




= P

T ∧T∑
j=1

dj ≥ x and

T ∧T∑
j=1

vj−1 ≤
T ∧T∑
j=1

αjdj + β


= P

λT ∧T∑
j=1

dj ≥ λx and cλ2
T ∧T∑
j=1

vj−1 ≤ cλ2
T ∧T∑
j=1

αjdj + cλ2β


≤ P

T ∧T∑
j=1

(λ+ cλ2αj)dj − cλ2
T ∧T∑
j=1

vj−1 ≥ λx− cλ2β


≤ E

exp

T ∧T∑
j=1

(λ+ cλ2αj)dj − cλ2
T ∧T∑
j=1

vj−1

 · exp(−λx+ cλ2β),

where the last inequality applies the Chernoff’s inequality. By Lemma 1.1, there exists c such that

cλ2 = λ̃2

2 . Then the following bound holds:

E

exp

T ∧T∑
j=1

(λ+ cλ2αj)dj − cλ2
T ∧T∑
j=1

vj−1

 = E

exp

T ∧T∑
j=1

(λ+ cλ2αj)dj −
λ̃2

2

T ∧T∑
j=1

vj−1


= E

[
eET∧T ·(λ+cλ2α) · e−ET∧T (λ+cλ2α)UT ∧T

]
≤ eET ·(λ+cλ2α)E

[
e−T ∧T ·C(λ+cλ2α)UT ∧T

]
≤ eET ·(λ+cλ2α).

Then we obtain the final bound:

P

 T⋃
t=1


t∑

j=1

dj ≥ x and

t∑
j=1

vj−1 ≤
t∑

j=1

αjdj + β




≤ exp(ET ·
(
λ+ cλ2α

)
) · exp(−λx+ cλ2β)
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