
Notes on Dynamical Systems

1 Preliminaries

1.1 Metric Spaces

Definition 1.1 (Metrics). Let X be a set. A map d : X ×X → [0,∞) is called a metric on X if

1. d(x, y) = d(y, x),

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) + d(y, z) ≥ d(x, z).

(X, d) is called a metric space, where d is a metric and X is a topological space with topology induced
by d. We also denote it by X when the metric is indicated.

Definition 1.2 (Complete metric space). Let (X, d) be a metric space. A sequence {xk}k=1,2,... in X is
called a Cauchy sequence if ∀ε > 0, ∃N ∈ N such that ∀n,m > N we have d(xn, xm) < ε.

We call a metric space X is complete, if every Cauchy sequence in X converges in M .

Example 1.3 (The space of continuous maps). Let X be a compact topological space, Y be a metric
space with a metric d, and C(X,Y ) be the set of all continuous maps from X to Y .

Define a metric dist0 on C(X,Y ) by

dist0(f, g) = min{1, sup
x∈X

max{d(f(x), g(x))}}

for f, g ∈ C(X,Y ).
Note that if Y is a complete metric space, then C(X,Y ) is complete as well, because its topology is

as same as that induced by the uniform metric when X is compact.

1.2 Riemannian manifolds

In this subsection, we give a brief introduction to Riemannian manifolds.

Definition 1.4 (Ck Riemannian manifolds). A Ck Riemannian metric is a family of positive definite
symmetric bilinear form {〈 , 〉p}p∈M defined on the tangent space TpM with the following property: For
any Ck vector fields X and Y , the map p→ 〈Xp, Yp〉p is Ck.

A Ck Riemannian manifold is a Ck manifold with a Ck Riemannian metric.
When k =∞, we call it a smooth Riemannian manifold.

In this note, we mainly focus on the smooth case.
Let x = (x1, ..., xd) be local coordinates. The metric can be represented by a positive definite,

symmetric matrix
(gij(x))i,j=1,...,d,

where gij(x) is smooth. And we denote the inverse of the metrix by (gij(x))i,j=1,...,d.
For every v ∈ TpM , we define ‖v‖ = (〈v, v〉p)1/2. Let [a, b] be a closed interval in R, and γ : [a, b]→M

be a smooth curve. We define the energy of λ by

E(γ) =
1

2

∫ b

a

‖dγ

dt
dt‖2.

We now rewrite it in local coordinates:

E(γ) =
1

2

∫ b

a

gij(x(γ(t)))ẋi(t)ẋj(t),

where the local coordinates of γ(t) is x(γ(t)) = (x1(γ(t)), ..., xd(γ(t)), and ẋi(t) = d
dt (x

i(γ(t))).
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Then the Euler-Lagrange equations for the energy E are

ẍi(t) + Γijk(x(t))ẋj(t)ẋk(t) = 0, i = 1, ..., d

with the Christoffel symbols Γijk defined by

Γijk =
1

2
gil(gjl,k + gkl,j − gjk,l),

where gjl,k = ∂
∂xk gjl.

Definition 1.5 (Geodesic). For a Riemannian manifold M , a differentiable curve γ : [a, b] → M is
called a geodesic if it satisfies the Euler-Lagrange equations for the energy E(γ).

It is well-known that the geodesics are the shortest curves between two points which are sufficiently
close and there always exist geodesics on compact manifolds. Moreover, for a compact Riemannian
manifold M , any p ∈M , v ∈ TpM , there is a unique geodesic

cv : (−∞,+∞)→M

with c(0) = p, ċ(0) = v; and cv continuously depends on p and v.

Definition 1.6 (Exponential map). Let M be a compact Riemannian manifold, p ∈ M . We define the
exponential map

expp : TpM →M, by v → cv(1).

It is necessary to point out when M is not compact, the exponential map expp may not defined on
the whole of TpM . Fortunately, in this note, we only focus on the compact case, so expp is defined on
the entire TpM for every p ∈M by the Hopf-Rinow theorem[24,p.34].

Example 1.7 (Riemannian manifold as a metric space). Let M be a connected compact Ck Riemannian
manifold. For any x, y ∈ M , there is a C1 path connecting x and y, that is, a C1 map γ : [0, 1] → M
with γ(0) = x and γ(1) = y. We can define the length of γ by

L(γ) =

∫ 1

0

‖dγ

dt
dt‖.

Now we have
d(x, y) = inf{L(γ) : γ is a C1 path connecting x and y},

which makes M a metric space.
Moreover, M is a complete metric space by the Hopf-Rinow theorem.

Example 1.8 (The space of C1 maps). Let M ,N be C1 Riemannian manifolds, C1(M,N) be the set of
all C1 maps from M to N .

Recall that the Riemannian metric on M induces a metric on the tangent bundle TM naturally.
Define a metric dist1 on C1(M,N) as follow:

dist1(f, g) = dist0(df, dg)

for f, g ∈ C1(M,N).

1.3 Topological Dynamics

In this subsection, X denotes a locally compact separable metric space, and f is always continuous.

Definition 1.9 (Topological dynamics). A topological space X with a continuous map f : X → X is
called a discrete-time dynamical system.

In this note, every dynamical system means the discrete-time dynamical system.
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Definition 1.10 (Periodic points). A point x ∈ X is called periodic point of f : X → X with period
n ∈ N, if fn(x) = x. The set of all periodic points of f : X → X is denoted by Per(f). The smallest
positive n ∈ N, such that fn(x) = x is called minimal period of x.

Definition 1.11 (Non-wondering points). A point x ∈ X is called a non-wondering point of f : X → X,
if for any neighborhood U of x, there exists n ∈ N such that fn(U) ∩ U is a non-empty set. The set of
all non-wondering points of f : X → X is denoted by NW(f).

Definition 1.12 (Topological transitivity). A topological dynamical system f : X → X is called topo-
logically transitive if for any two non-empty open sets U and V , ∃N ∈ Z such that fN (U) ∩ V 6= ∅.

Definition 1.13 (Topological mixing). A topological dynamical system f : X → X is called topologically
mixing if for any two non-empty open sets U and V , ∃N > 0 such that fn(U) ∩ V 6= ∅ for all n > N .

From the definitions above, it is obvious that if a topological dynamical system is topologically
mixing then it is topologically transitive. Usually, there are topologically transitive maps which are not
topologically mixing, such as an irrational rotation of the circle. However, for Anosov diffeomorphisms,
topological mixing is equivalent to topological transitivity, which would be shown in Section 4.2.

Definition 1.14 (Topological conjugacy). A map f : M →M is called topologically conjugate to a map
g : N → N if there exist a homeomorphism h : M → N such that f = h−1gh.

2 Hyperbolic Sets and Anosov Diffeomorphisms

In this section, we denote M a C1 manifold, U a non-empty open subset of M , f : U → f(U) ⊂ M a
C1 diffeomorphism, and df : TM → TM the differential of f . Several proofs require too much materials
beyond the preliminaries we write before; therefore, for these proofs, we only give a sketch of proof or
provide the references.

Definition 2.1 (Hyperbolic sets). A compact, f-invariant subset Λ ⊂M is called hyperbolic if there are
C1 Riemannian metric, λ ∈ (0, 1), C > 0 such that

1. TΛM = Es ⊕ Eu

2. dfxE
s(x) = Es(f(x)) and dfxE

u(x) = Eu(f(x))

3. ‖dfnx v‖ ≤ Cλn‖v‖ for all v ∈ Es(x) and n > 0

4. ‖df−nx v‖ ≤ Cλn‖v‖ for all v ∈ Eu(x) and n > 0

Proposition 2.2. Es(x) and Eu(x) continuously depend on x.

Proof. We will prove for any converged sequence {xn}n∈N in Λ with the limit x we have limn→∞Es(xn) =
Es(x) and limn→∞Eu(xn) = Eu(x).

Assuming that dimEs(xi) = k, a constant, we let w1,i, w2,i, ..., wk,i be an orthonormal basis of Es(xi).
Let i tend to infinity, then we can get w1, ..., wk, an orthonormal subset with property ‖dfnxwj‖ ≤
Cλn‖wj‖ for all n ∈ N. Therefore, {w1, ..., wk} ⊂ Es(x), which implies limn→∞Es(xn) ⊂ Es(x) and
dimEs(x) ≥ k.

Similarly, we can get dimEu(x) ≥ s− k, where dimTxM = s.
Besides, by s = dimTxM = dimEs(x) + dimEu(x) ≥ s − k + dimEs(x), k ≥ dimEs(x). Therefore,

dimEs(x) = k and w1, ..., wk form a basis for Es(x). It means limn→∞Es(xn) = Es(x0). Similarly,
limn→∞Eu(xn) = Eu(x).

Definition 2.3 (Anosov diffeomorphisms). A diffeomorphism f : M → M is called Anosov diffeomor-
phism if M is a hyperbolic set of f .

We will use the following theorem to prove the structural stability of Ansov diffeomorphisms:
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Theorem 2.4 (Shadowing Theorem). Let Λ be a hyperbolic set of f : U → f(U) ⊂ M . Then there is
an open set O ⊂ U containing Λ and ε0, δ0 > 0, satisfying:
∀ε > 0,∃δ > 0 such that for any g : O →M with dist1(g, f) < ε0, any homeomorphism h : X → X of

a topological space X, and any continuous map φ : X → O with dist0(φh, gφ) < δ there is a continuous
map ψ : X → O with ψh = gψ and dist0(φ, ψ) < ε.

Moreover, if ψ′h = gψ′ for some ψ′ : X → O with dist0(φ, ψ′) < δ0 then ψ′ = ψ.

Sketch of proof. Refer to [1, p.566] for the details.
We will apply the contraction mapping principle in the proof. Notice that the desired map ψ : X → O

is a fixed point of
F : C(X,O)→ C(X,M), ψ → gψh−1.

In order to keep dist0(φ, ψ) < ε, for sufficiently small θ > 0, consider the map

A : Bθ(φ)→ Cφ(X,TM),

given by (Aψ)(y) = exp−1
φ(y) ψ(y),

where exp−1
p is the inverse of exponential map of M at p, Bθ(φ) = {ψ ∈ C(X,O) : dist0(φ, ψ) < θ},

Cφ(X,TM) = {v ∈ C(X,TM) : v(y) ∈ Tφ(y)M, ∀y ∈ X}.
Then we define Fφ = AFA−1, which can be decomposed into linear and nonlinear parts, that is,

Fφ(v) = dFφ0 v +H(v). Now we define

T (v) = −(dFφ0 − Id)−1H(v).

T can be proved to be contracting on a sufficiently small neighborhood of φ. By contraction mapping
principle, we obtain v, the fixed point of T . Now we find a fixed point of F , A−1v.

Besides, we introduce a criterion for hyperbolicity.
Firstly, given a continuous direct sum decomposition TΛM = Es ⊕ Eu, that is for every x ∈ Λ and

v ∈ TxM we have v = vs+vu where vs ∈ Es(x) and vu ∈ Eu(x), and Es(x), Eu(x) continuously depend
on x.

For α > 0, let us define
Ks
α(x) = {v ∈ TxM : ‖vu‖ ≤ α‖vs‖},

Ku
α(x) = {v ∈ TxM : ‖vs‖ ≤ α‖vu‖}.

They are called stable and unstable cones of size α, respectively.
Let Λ be a hyperbolic set of f .

Proposition 2.5. ∀α > 0, ∃ε > 0 such that ∀x ∈ Λ, we get dfx(Ku
α(x)) ⊂ {0} ∪ int(Ku

α(f(x))) and
df−1
f(x)(K

s
α(f(x))) ⊂ {0} ∪ int(Ks

α(x)).

Proof. For x ∈ Λ, let v = vs + vu ∈ Ku
α(x). We will prove ‖dfx(vs)‖ < α‖dfx(vu)‖.

Firstly, note that there exists a metric such that the hyperbolic set Λ is with the constant C = 1
and λ ∈ (0, 1), which is called an adapted metric. So by the hyperbolicity ‖dfxvs‖ ≤ λ‖vs‖. Then
by the definition of Ku

α(x) we have ‖dfxvs‖ ≤ αλ‖vu‖. Applying the hyperbolicity again, ‖dfxvs‖ ≤
αλ2‖dfxvu‖ < α‖dfxvu‖.

The second equation can be proved similarly.

Proposition 2.6. ∀δ > 0, ∃α > 0 such that ∀x ∈ Λ, ‖df−1
x v‖ ≤ (λ + δ)‖v‖ for v ∈ Ku

α(x) and
‖dfxv‖ ≤ (λ+ δ)‖v‖ for v ∈ Ks

α(x).

Proof. For x ∈ Λ, let v = vs + vu ∈ Ks
α(x). Choose the adapted metric as the proposition above.

Notice that when ‖v‖ = 1, ‖dfxvu‖ → 0 as α→ 0, by continuity. So for every δ > 0, there exists an
α such that ‖dfxvu‖ ≤ δ.

Then we have ‖dfxv‖ ≤ ‖dfxvs‖+ ‖dfxvu‖ ≤ λ‖v‖+ δ‖v‖ = (λ+ δ)‖v‖.
The first inequality for v ∈ Ku

α(x) can be proved similarly.
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Proposition 2.7. Let f : U → f(U) ⊂ M be a C1 diffeomorphism and Λ be a compact invariant set

for f : U → M . If there are α > 0, λ ∈ (0, 1) and subspaces decomposition TΛM = Ẽs ⊕ Ẽu such that

Ẽs(x) and Ẽu(x) continuously depend on x, and the stable cones Ks
α and unstable cones Ku

α of size α
determined by the decomposition satisfy the following properties for any x ∈ Λ:

1. dfxK
u
α(x) ⊂ Ku

α(f(x)) and df−1
f(x)K

s
α(f(x)) ⊂ Ks

α(x),

2. ‖dfxv‖ < ‖v‖ for 0 6= v ∈ Ks
α(x) and ‖df−1

x v‖ < ‖v‖ for 0 6= v ∈ Ku
α(x).

Then Λ is a hyperbolic set for f .

Proof. Firstly by the compactness we have ∃λ ∈ (0, 1) such that ‖dfxv‖ ≤ λ‖v‖ for v ∈ Ks
α(x), and

‖df−1
x v‖ ≤ λ‖v‖ for v ∈ Ku

α(x). For x ∈ Λ, we define

Es(x) =
⋂
n≥0

df−nfn(x)K
s(fn(x)),

Eu(x) =
⋂
n≥0

dfnf−n(x)K
u(f−n(x)).

Then Λ is hyperbolic set of f with decomposition TΛM = Es ⊕ Eu, constant λ and C = 1.

At the end of the section, we present an important concept, stable and unstable manifolds. Their
denseness is highly relevant to the topological transitivity of Anosov diffeomorphisms, which will be
shown in Section 4.

Definition 2.8 (Stable and unstable manifolds). For a hyperbolic set Λ of f : U → f(U) ⊂M and every
x ∈ Λ, we define stable manifolds of x by

W s(x) = {y ∈M : d(fn(x), fn(y))→ 0 as n→∞}

and unstable manifolds of x by

Wu(x) = {y ∈M : d(f−n(x), f−n(y))→ 0 as n→∞}.

Definition 2.9. For an Anosov diffeomorphism f : M →M and any ε > 0, we define

W s
ε (x) = {y ∈M : d(fn(x), fn(y)) < ε,∀n ∈ N0},

Wu
ε (x) = {y ∈M : d(f−n(x), f−n(y)) < ε,∀n ∈ N0}.

The stable and unstable manifolds theorem[2, p.121] have shown the existence of Wu and W s. In
this note, we do not need all of the results of the theorem. Therefore, a part of results are collected in
the following proposition.

We denote the distances along the stable and the unstable manifolds by ds and du respectively.

Proposition 2.10. For an Anosov diffeomorphism f : M → M , there are λ ∈ (0, 1), Cp > 0, ε, δ > 0,
and a splitting TxM = Es(x)⊕ Eu(x) for all x ∈M such that:

1. dfx(Es(x)) = Es(f(x)), and dfx(Eu(x)) = Eu(f(x));

2. ∀vs ∈ Es(x), ‖dfxvs‖ ≤ λ‖vs‖, and ∀vu ∈ Eu(x), ‖df−1
x vu‖ ≤ λ‖vu‖;

3. ∀y ∈W s(x), ds(f(x), f(y)) ≤ ds(x, y), and ∀y ∈Wu(x), ds(f−1(x), f−1(y)) ≤ du(x, y);

4. f(W s(x)) = W s(f(x)), and f(Wu(x)) = Wu(f(x));

5. TxW
s(x) = Es(x), and TxW

u(x) = Eu(x);

6. if d(x, y) < δ, W s
ε (x) ∩ Wu

ε (x) = {px,y}; moreover, px,y continuously depends on x,y, and
ds(px,y, x) ≤ Cpd(x, y), du(px,y, y) ≤ Cpd(x, y).

Proof. It is a direct result from Hadamard-Perron theorem in [1, p.242] and Proposition 5.9.1 in [2,
p.128].
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3 Properties of Anosov Diffeomorphisms

3.1 Anosov diffeomorphisms are structurally stable

Definition 3.1 (Structurally stability). A C1 map f : M →M is called structurally stable if there exists
a neighborhood U of f in the C1 topology such that every g ∈ U is topologically conjugate to f .

Lemma 3.2. Let Λ be a hyperbolic set of f : U → M . There is an open set U(Λ) containing Λ and
ε0 > 0 such that if K ⊂ U(Λ) is a compact invariant subset of a diffeomorphism g : U → M with
dist1(g, f) < ε0, then K is a hyperbolic set of g.

Proof. Notice that Es(x) and Eu(x) continuously depends on x by Proposition 3.2; therefore, we can
continuously extend the subspace decomposition to TU(Λ)M = Es⊕Eu. By Proposition 3.5 and Proposi-
tion 3.6, the cones Ks

α(x) and Ku
α(x) with x ∈ U(Λ) determined by the decomposition have the following

properties:

1. dfxK
u
α(x) ⊂ Ku

α(f(x)) and df−1
f(x)K

s
α(f(x)) ⊂ Ks

α(x);

2. ‖dfxv‖ ≤ (λ+ δ)‖v‖ for 0 6= v ∈ Ks
α(x) and ‖df−1

x v‖ ≤ (λ+ δ)‖v‖ for 0 6= v ∈ Ku
α(x).

And we have dist1(f, g) = dist0(df, dg) < ε0. For a sufficiently small ε0 we can replace f by g.
That is, for 0 6= v ∈ Ks

α(x), ‖dgxv‖ ≤ dist0(df, dg)‖v‖+(λ+δ)‖dfxv‖ < ‖v‖. Similarly, ‖dgxv‖ < ‖v‖
for 0 6= v ∈ Ku

α(x), dgxK
u
α(x) ⊂ Ku

α(g(x)) and dg−1
g(x)K

s
α(g(x)) ⊂ Ks

α(x).

Then by Proposition 3.7, the proof is finished if we let K be an compact invariant subset of U(Λ).

Corollary 3.3. Anosov diffeomorphisms form an open set in Diff1(M).

Proof. Let f : M →M be an Anosov diffeomorphism. By Lemma 4.2, there is εf > 0 such that for any
diffeomorphism g : M →M with dist1(g, f) < εf , g is an Anosov diffeomorphism.

Theorem 3.4. Let Λ ⊂ M be a hyperbolic set of the diffeomorphism f : U → M . Then for every open
set V ⊂ U containning Λ and every ε > 0, there exists δ > 0 such that if g : V →M with dist1(f, g) < δ,
there is a hyperbolic set K of g and a homeomorphism χ : K → Λ such that χg = fχ and dist0(χ, Id) < ε.

Proof. By the Shadowing Theorem, for every ε > 0 there exists δ > 0 such that if we are given X =
Λ, h = f |Λ, φ = IdΛ and g : V → M is choosen to satisfy dist1(f, g) < δ, there is a continuous map
ψ : Λ→ U with ψf |Λ = gψ.

Set K = ψ(Λ). By Lemma 4.2, there exist ε0 > 0 such that K is a hyperbolic set of g if dist1(f, g) < ε0.
Therefore, we can let δ above be not greater than ε0 to keep the hyperbolicity of K.

Now since K is hyperbolic set of g we can apply the Shadowing theorem again by taking X = K,
h = g|K , φ = IdK . There is a continuous map ψ′ : K → U with ψ′g|K = f |Λψ′.

By the equation above, we can get ψ′ψf |Λ = f |Λψ′ψ and g|Kψψ′ = ψψ′g|K . By the uniqueness, we
get ψψ′ = IdΛ and ψψ′ = IdK . That is ψ−1 = ψ′.

Finally, let the homeomorphism χ : K → Λ be ψ′ to finish the proof.

Corollary 3.5. Anosov diffeomorphisms are structurally stable.

Proof. Let f : M → M be an Anosov diffeomorphism. By Theorem 4.3, for every ε > 0, there is δ > 0
such that for any g : M → M with dist1(f, g) < δ, we get a h : M → M with dist0(h, Id) < ε and
hg = fh. Therefore, f is structurally stable by Definition 4.1.

3.2 Topological transitivity of Anosov diffeomorphisms

In this subsection, M is a connected compact Hausdorff smooth Riemannian manifold.

Lemma 3.6. Let f : M →M be an Anosov diffeomorphism. Then Per(f) is dense in NW(f).

6



Proof. It is sufficient to prove that for any x ∈ NW(f) and ε > 0 there exists p ∈ Per(f) such that
d(x, p) < 2ε.

For every ε > 0, choose δ ∈ (0, ε) by the Shadowing theorem. Because V = {z ∈M : d(z, x) < δ/2} is
a neighborhood of x ∈ NW(f), there is a n ∈ N such that fn(V )∩V is nonempty. Take a z ∈ V ∩f−n(V ).

Let h : Zn → Zn by h(m) = m + 1, φ : Zn → M by φ(m) = zm where zm = fm(z). Since
d(zm+1, f(zm)) = 0 for every m < n − 1 in Zn and d(zn, f(zn−1)) ≤ d(z, x) + d(x, fn(z)) ≤ δ, by the
Shadowing theorem, there exists {pm}m∈Zn

such that pm+1 = f(pm), p0 = f(pn−1) and d(pm, zm) < ε.
We get d(p0, x) ≤ d(p0, z) + d(z, x) < 2ε.

Definition 3.7 (ε-dense). A subset A ⊂ X is called to be ε-dense in a metric space (X, d) if d(x,A) < ε
for every x ∈ X.

Theorem 3.8. Let f : M →M be an Anosov diffeomorphism. Then the following are equivalent:

1. NW(f) = M ,

2. Every unstable manifold is dense in M ,

3. Every stable manifold is dense in M ,

4. f is topologically transitive,

5. f is topologically mixing.

Proof. 1 ⇒ 2: We need to prove that ∀ε > 0, ∀x ∈M , the unstable manifold Wu(x) is ε-dense in M .
Firstly, for any ε > 0, we construct a ε/4-dense set with finite elements in Per(f). By Lemma 4.6,

Per(f) is dense in M , which implies M =
⋃
x∈Per(f)B(x, ε/4). Therefore, by compactness of M , there

are N elements in Per(f), {xi}i=1,2,...,N , such that M =
⋃N
i=1B(xi, ε/4). That is, ∀x ∈M , ∃i such that

dist(x, xi) < ε/2 and xi 6= x.
Let the product of their periods be P and define g = fP . We prove that g and f have the same

unstable manifolds, so we can use the unstable manifolds of g to instead of those of f . Let W̃u(x) = {y ∈
M : d(gn(x), gn(y) → 0 as n → ∞} be the unstable manifolds of g at x. Obviously, Wu(x) ⊂ W̃u(x).

Because f is C1, for every n ∈ N, d(fnP+1(x), fnP+1(y)) < d(fnP (x), fnP (y)). Then W̃u(x) ⊂Wu(x).
And we need to notice the following lemma:

Lemma 3.9. ∃q ∈ N such that if for some y,xi,xj such that dist(Wu(y), xi) < ε/2 and dist(xi, xj) < ε/2,
then we have dist(gnq(Wu(y)), xi) < ε/2 and dist(gnq(Wu(y)), xj) < ε/2.

Proof. We choose appropriate ε to make sure that Wu(y) ∩ W s
e (xi) 6= ∅ for a sufficiently small e by

Proposition 3.10.
Then let z ∈ Wu(y) ∩W s

e (xi). Because z ∈ W s(xi) =
⋃∞
n=0 f

−nW s
e (fn(xi)), there is a t0 such that

dist(gt(z), xi) < ε/2 for all t ≥ t0 (We need note that gt(xi) = xi). Then we have dist(gt(Wu(z)), xj) < ε
by the triangle inequality.

We can gain a w ∈ Wu(gt(z)) ∩ W s
e′(xj) for a sufficiently small e′ by Proposition 3.10, for the

distance between gt(Wu(z)) and xj is small enough. Because w ∈ W s(xj), there is a s0 such that
dist(gτ (w), xj) < ε/2 for all τ ≥ s0.

Finally, we make q = s0 + t0 to finish the lemma.

Since the set {xi}i=1,2,...,N is ε/4-dense, ∀y ∈ M , ∃xs such that dist(gnq(Wu(y)), xs) < ε/2. And
for any xt there is a chain in {xi}i=1,2,...,N which connects xt and xs and the distance between two
consecutive points less than ε/2, because M is compact and connected. Note that the length of the chain
will not be larger than N .

Therefore, for every z ∈M , if we choose i such that dist(z, xi) < ε/2 and let y = g−Nq(x) for any x,
we can obtain dist((Wu(x)), z) ≤ dist((Wu(x)), xi) + dist(xi, z) < ε. It means Wu(x) is ε-dense in M
for any x ∈M and ε > 0.

1 ⇒ 3: Similarly.
2 ⇒ 5: We need to prove that ∃N , ∀n > N , fn(U)∩ V 6= ∅ for any non-empty sets U and V , by the

definition of topoligically mixing.
Let us choose x, y ∈M and δ > 0 such that Wu

δ (x) ⊂ U and B(y, δ) ⊂ V . Notice that fn(Wu
δ (x)) ⊂

fn(U), for any n ∈ N.
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Lemma 3.10. If for every x ∈M , Wu(x) is dense in M , then ∀δ > 0, ∃R = R(δ) > 0 such that every
ball of radius R in every unstable manifold is ε-dense in M .

Proof. Because Wu(x) =
⋃
RW

u
R(x) is dense in M , there is R which depends on x and Wu

R(x) is ε/2-dense
in M . Since Wu is a continuous foliation, we get δ(x) such that Wu

R(y) is ε-dense, ∀y ∈ B(x, δ).
Now we have M =

⋃
x∈M B(x, δ(x)). By compactness we find a finite collection for those balls

B(x, δ(x)). Then choose the maximal R(x) for those balls to finish the lemma.

Notice that ∃N , ∀n > N , Wu
R(fn(x)) ⊂ fn(Wu

δ (x)).
By the lemma above, for n > N , B(y, δ) ∩Wu

R(fn(x)) 6= ∅, which means V ∩ fn(U) 6= ∅. Hence f is
topologically mixing.

3 ⇒ 5: Similarly.
5 ⇒ 4 ⇒ 1: It is obvious by their definitions.

4 Examples

In this section, we firstly introduce a procedure to construct an Anosov diffeomorphism on nilmanifolds.
Then we will follow the procedure to give several examples of Anosov diffeomorphisms.

4.1 A brief introduction to nilmanifolds

Before giving the detail of the construction, we need to give a brief introduction to nilmanifolds.

Definition 4.1 (Lie groups). A group G with a smooth manifold structure is called Lie group, if the
following group operations are smooth:

(a, b)→ ab,

a→ a−1,

where a, b ∈ G.

Definition 4.2 (Lie group homomorphisms). Given Lie group G and H, A map g : G→ H is called a
Lie group homomorphism if it is a smooth map and also a group homomorphism from G to H.

It is called a Lie group isomorphism if it is also a diffeomorphism.
A Lie group isomorphism g : G→ G is called a Lie group automorphism.

And in the rest of the subsection, we use G to represent a Lie group.
By the definition above, we can define the following smooth map, left transition for every g ∈ G:

Lg(h) = gh.

In fact, Lg : G → G is a diffeomorphism with smooth inverse Lg−1 . Therefore, for an arbitrary
smooth vector field X, we can obtain (Lg)∗X, a smooth vector field, which is defined as following:

((Lg)∗X)h = (dLg)g−1h(Xg−1h),

where h ∈ G.
Now we give a brief introduction to Lie algebras.

Definition 4.3 (Lie algebra). Let L be a vector space. A map from L×L to L denoted (X,Y )→ [X,Y ]
is called a Lie bracket on L if

1. the map is bilinear;

2. ∀X ∈ L, [X,X] = 0;

3. ∀X,Y, Z ∈ L, [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last condition is called Jacobi identity.
The vector space L with a Lie bracket is called a Lie algebra.
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Definition 4.4 (Lie algebra homomorphisms). A vector space homomorphism φ : L → L′ is called a
Lie algebra homomorphism, if φ([X,Y ]) = [φ(X), φ(Y )].

A vector space isomorphism φ : L→ L′ is called a Lie algebra isomorphism if φ([X,Y ]) = [φ(X), φ(Y )].
A Lie algebra isomorphism φ : L→ L is called a Lie algebra automorphism.
We call a Lie algebra automorphism is hyperbolic, if its eigenvalues are away from the unit circle.

Definition 4.5 (Structure constants of Lie algebras). Let L be a Lie algebra with a basis X1, X2, ...Xn.
We have

[Xi, Xj ] =

n∑
k=1

akijXk

for any i, j ≤ n. We call those akij are structure constants of L.

Example 4.6 (Lie algebra of G). Now we define a Lie algebra associated with Lie group G. Firstly we
let

Lie(G) = {X is a smooth vector field on G : (Lg)∗X = X,∀g ∈ G}.

And for any smooth vector fields X,Y on G, define a smooth vector field [X,Y ] by

[X,Y ]f = XY f − Y Xf,

for every smooth map f : G→ G. (Note that [X,Y ] is a smooth vector field although we have not shown
that.)

Lie(G) is called Lie algebra of G, and the map (X,Y )→ [X,Y ] is a Lie bracket on Lie(G).

We define [x, y] = x−1y−1xy. Notice the lower central series of G:

γ1(G) = G,

γ2(G) = [γ1(G), G],

...

γk+1(G) = [γk(G), G].

Definition 4.7 (Nilpotent Lie group). G is called a nilpotent Lie group, if ∃n ∈ N such that γn(G) = 1.

Definition 4.8 (c-step nilpotent Lie group). G is called a c-step nilpotent Lie group, if γc(G) 6= 1 and
γc+1(G) = 1.

Definition 4.9 (Lattice). N is a simply-connected and nilpotent Lie group. Let Γ be a discrete subgroup
of G. It is called a lattice in G if G/Γ is a compact quotient space.

Note that the quotient space G/Γ must be a smooth manifold by Theorem 21.29 in Lee’s book. Some
nilpotent Lie groups do not admit any lattices. Therefore, we need the following criterion:

Proposition 4.10 (Maltsev’s criterion). A nilpotent Lie group N admits some lattices if and only if all
of the structure constants of Lie(N) are in Q.

Proof. Refer to Theorem 2.12 in Raghunathan’s book.

Definition 4.11 (Nilmanifolds). A differential manifold N/Γ is called a nilmanifold, if N is a simply-
connected nilpotent Lie group and Γ is a lattice in N .

Example 4.12 (Rn as a Lie group). Rn is a Lie group with the group operation +. Obviously, Rn is an
abelian group, so a nilpotent Lie group.

Moreover, it is well-known that Rn is simply-connected.

Example 4.13 (Tn as a Lie group). It is easy to verify that Zn is a normal subgroup of Rn. And it is
also a closed Lie subgroup of Rn, for it is discrete subgroup. Therefore, Tn = Rn/Zn is a Lie group.

And Tn ∼= S1 × S1 × ...× S1, which implies compactness. So Zn is a lattice of Rn.
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4.2 Example: An Anosov diffeomorphism on tori

Now we can introduce the procedure to construct an Anosov diffeomorphism on a nilmanifold. Let N be a
simply-connected nilpotent Lie group, Γ be a lattice in N , f : N → N be a Lie group automorphism of N
such that f(Γ) = Γ, and dfId : TIdN → TIdN , the Lie algebra automorphism induced by f , is hyperbolic.

Obviously, the procedure induces a Anosov diffeomorphism f̃ : N/Γ→ N/Γ on a nilmanifold.
The procedure is reasonable because Smale pointed out that if a Lie algebra admits a hyperbolic Lie

algebra automorphism then it must be nilpotent, which forces N to be nilpotent and Γ to be a uniform
discrete subgroup.

It is necessary to point out that there are other methods to construct Anosov diffeomorphisms. Read-
ers can refer to F. T. Farrell and L. E. Jones’s paper Anosov diffeomorphisms constructed from π1DiffSn.
Their paper also show that not every smooth manifold which admits an Anosov diffeomorphism is diffeo-
morphism to an infranilmanifold. However, we still do not know whether every smooth manifold which
admits an Anosov diffeomorphism is homeomorphism to an infranilmanifold.

Then we will construct an Anosov diffeomorphisms on T2 as an example.

Example 4.14. As we show in Example 5.12 and Example 5.13, R2 is a simply-connected nilpotent Lie
group and Z2 is a lattice in R2.

Firstly, we define a linear map L : R2 → R2 given by the matrix

(
2 1
1 1

)
. Because detL = 1, we have

L(Z2) = Z2. And we denote the eigenvalues of L by λ and 1/λ, where the value of λ is 3−
√

5
2 .

The map L induces a diffeomorphism FL : T2 → T2 by

FL(x, y) = (2x+ y, x+ y)(mod 1),

where x, y ∈ R/Z.

Now we prove that FL is an Anosov diffeomorphism.

Proposition 4.15. FL is an Anosov diffeomorphism.

Proof. For any p ∈ T2, the differential of FL at p is a vector space isomorphism (dFL)p : TpT2 → TFL(p)T2.

The matrix of (dFL)p in term of the coordinate basis is

(
2 1
1 1

)
.

Then we have a dirct sum decomposition, TpT2 = Esp ⊕Eup , where Esp, E
u
p are eigenspaces associated

with λ, 1/λ, respectively. It is easy to verify that {Esp}p∈T2 ({Eup }p∈T2) form the stable (unstable)
distribution of FL. Therefore, FL is an Anosov diffeomorphism.

Finally, we prove that FL is topologically mixing. It is sufficient to prove Per(FL) is dense in T2. By
Lemma 4.6 and Theorem 4.8, FL is topologically mixing.

Proposition 4.16. The periodic points of FL are dense in T2.

Proof. We claim that all points with a rational coordinate are periodic points. The claim implies the
proposition is true. Now we prove the claim. Firstly, we let p = (s/q, t/q) ∈ T2, an arbitrary point with
a rational coordinate.

Consider the set of rational points on T2 with denominator q. It is a finite set with q2 element and
contains {FnL (s/q, t/q)}n≥0, which means that ∃M,N ∈ N such that FML (s/q, t/q) = FNL (s/q, t/q).

Now recall that FL is a diffeomorphism. The proof is finished.

4.3 Example: An Anosov diffeomorphism on a nontoral manifold

In this subsection, we firstly introduce the Heisenberg group and use it to construct another example of
Anosov diffeomorphism.

We define the Heisenberg group

H =


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ R
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with the matrix multiplication.
The Lie algebra of H is given by

Lie(H) =


0 x z

0 0 y
0 0 0

∣∣∣∣∣∣x, y, z ∈ R


with generators

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , and Z =

0 0 1
0 0 0
0 0 0

 .

Now we can begin our construction. We let G = H × H =

{(
A 0
0 B

)∣∣∣∣A,B ∈ H}, which is a

simply-connected nilpotent Lie group. Moreover, the basis of Lie(G) contains

X1 =

(
X 0
0 0

)
, Y1 =

(
Y 0
0 0

)
, Z1 =

(
Z 0
0 0

)
,

X2 =

(
0 0
0 X

)
, Y2 =

(
0 0
0 Y

)
, Z2 =

(
0 0
0 Z

)
.

For any λ > 1, we define F : Lie(G)→ Lie(G) given by

F (X1) = λX1, F (X2) = λ−1X2,

F (Y1) = λ2Y1, F (Y2) = λ−2Y2,

F (Z1) = λ3Z1, F (Z2) = λ−3Z2,

which is a hyperbolic Lie algebra automorphism on Lie(G).
By Proposition 5.10, G admits some lattices because [X,Y ] = Z and other Lie brackets of generators

are zero. Actually we can give a lattice Γ defined by expId(γ) with

γ =


(
A 0
0 σ(A)

)
∈ Lie(G)

∣∣∣∣∣∣A =

0 x z
0 0 y
0 0 0

 for x, y, z are algebraic integer in K

 ,

where K = Q(
√

3) = {a+ b
√

3 : a, b ∈ Q}, σ : a+ b
√

3→ a− b
√

3.
Notice we have the following decomposition:

Lie(G) = Lie(Gu)⊕ Lie(Gs),

where Gu =

{(
A 0
0 0

)∣∣∣∣A ∈ Lie(H)

}
, and Gs =

{(
0 0
0 B

)∣∣∣∣B ∈ Lie(H)

}
.

By Lie group and Lie algebra theory, there is a unique automorphism f : G→ G with df |Id = F and
f(Γ) = Γ. It induces an Anosov diffeomorphism of G/Γ.

Proposition 4.17. Let L : R2 → R2 be a linear Lie group automorphism on R2 with integer elements. If
detL = 1 and the absolute values of eigenvalues of L are not 1, then L induced an Anosov diffeomorphism
FL on T2.

Proof. Let L =

(
a b
c d

)
be the matrix of the linear Lie group automorphism on R2, where a, b, c, d are

integers. We can gain the result that L(Z2) = Z2 and assume that the eigenvalues of L are λ and 1/λ
with |λ| < 1, because detL = 1.

Note that T2 = R2/Z2. Then the automorphism on T2 induced by L can be writen as:

FL(x, y) = (ax+ by, cx+ dy)(mod 1).

We need to prove FL is an Anosov diffeomorphism on T2.
Define Eλ = {v ∈ R2 : Lv = λv} and E1/λ = {v ∈ R2 : λLv = v}. Then on Eλ we have

‖Lnv‖ = λn‖v‖ and on Eλ we have ‖L−nv‖ = λn‖v‖, where the norm is induced by Euclidean metric.
Because the tangent bundle of the tori TT2 ∼= T2 ×R2 and R2 = Eλ ⊕E1/λ, the tangent space of T2

at any point can be splitted into stable subspace Eλ and the unstable subspace E1/λ.
Then by L(Eλ) = Eλ and L(E1/λ) = E1/λ, we finish the proof.
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