The Solution to a Special Upper-Triangular Toeplitz System
Shaocong Ma

1 Introduction

A Toeplitz matrix is a square matrix with constant diagonals, which means that each element along a
diagonal has the same value. Formally, an n x n Toeplitz matrix T can be defined as follows:
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where t;, denotes the constant value on the k-th diagonal. In this note, we consider a special form of
Toeplitz matrix and present the solution to the linear system constructed by this matrix.

2 The Main Result

Theorem 2.1. Suppose the sequence {(a”7 bn)}nN:1 satisfies the following recursion:
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Proof. We re-write the recursion in matrix form.
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We start from investigating two consecutive rows of this equality;
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It solves the relation between a, and a,t1:
ap — Csape1 = Cp — C3Cy + CoCsapqr;
or it can be re-written as
a, =Ci(1—-C3)+ (14 Cy)Czap41.

Let o = C4(1 — C3) and 8 = (1 + C2)Cs. We can resolve this recursion to ay:
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Moreover, if n =1 and C3 =1+ %, we have the following special form:
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This result indicates that unless Cs is very small, the value a; can grow exponentially.
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