Statistical Theory Notes

June 29, 2019

Contents

1	Poir	Point Estimation		
	1.1	Consistency	2	
	1.2	Sufficient statistics and minimal sufficient statistics	2	
	1.3	Complete statistics	3	
	1.4	Ancillary statistics	4	
	1.5	Unbaised estimation	4	
	1.6	Uniform minimal variance unbaised estimation (UMVUE)	5	
	1.7	Lower bound for variance in unbiased estimation	6	
	1.8	Exponential family: Part I	8	
	1.9	Methods of moment	8	
2	Maximum likelihood 9			
	2.1	Maximum likelihood estimators (MLE)	9	
	2.2	Uniqueness and existence of MLEs	10	
	2.3	•	10	
	2.4	Invariance	11	
	2.5	Asymptotic consistency and normality	11	
3	Hvr	oothesis Testing	13	
-	3.1		13	
	3.2		13	
	3.3		15	
	3.4	Unbiased tests	16	
	3.5	Exponential family: Part III	16	
	3.6		17	
	3.7		18	
	Dee	Decision Theory and Bayes Methods 19		
4	4.1		19 19	
	4.1 4.2		$\frac{19}{20}$	
	4.2	Dayes rules	20	
5			21	
	5.1		21	
	5.2		21	
	5.3		22	
	5.4		23	
	5.5		23	
	5.6		23	
	5.7	Bayes credible intervals		
	5.8	Large sample confident intervals	24	

1 Point Estimation

Problem. From the observed data, choose a plausible value for unknown θ , or $\psi(\theta)$ for some known ψ .

1.1 Consistency

Definition 1.1. A sequence of estimators T_n based on a sample X_1, \ldots, X_n is said to be consistent of $\psi(\theta)$ if

$$T_n \xrightarrow{\mathbb{P}} \psi(\theta)$$

for each $\theta \in \Theta$.

 T_n is called <u>a_n-consistent</u> if $a_n(T_n - \psi(\theta)) = o_p(1)$.

Proposition 1.2. If $\mathbf{E}T_n \to \psi(\theta)$ and $\operatorname{Var}T_n \to \psi(\theta)$, then T_n is consistent for $\psi(\theta)$.

1.2 Sufficient statistics and minimal sufficient statistics

Definition 1.3. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} F_{\theta}, \ \theta \in \Theta$. A statistic $T(X_1, \ldots, X_n)$ is <u>sufficient for θ </u> if the distribution of X|T = t does not depend on θ for any t.

Example 1. Let $X_i \stackrel{iid}{\sim} N(\theta, 1)$. Let $U_{n \times n}$ be an orthogonal matrix s.t. the first row is $u_1 = \frac{1}{\sqrt{n}}(1, \ldots, 1)$. If Y = UX, then

$$Y_j \sim N(\sqrt{n}\theta u_j^T u_1, 1).$$

So $Y_1 = \sqrt{n}\bar{X}$ is sufficient; however, $Y_2, \ldots, Y_n \stackrel{iid}{\sim} N(0,1)$ contain no information about θ

Theorem 1.4. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}, \ \theta \in \Theta.$ T(X) is sufficient for θ if and only if there are non-negative functions h and g s.t. $f_{\theta}(x_1, \ldots, x_n) = h(x_1, \ldots, x_n)g(T(X); \theta).$

Remark.

• Invariance.

If T is sufficient for θ , and f is one-to-one, then f(T) is also sufficient.

Example 2. $X_1, \ldots, X_n \stackrel{iid}{\sim} U(\theta_1, \theta_2), \ \theta_2 > \theta_1, \ \theta_j \in \mathbb{R}.$

$$f_{\theta}(x_1, \dots, x_n) = \prod_i \frac{\mathbf{1}(\theta_1 < x_i < \theta_2)}{\theta_2 - \theta_1}$$
$$= (\theta_2 - \theta_1)^{-n} \cdot \mathbf{1}(\theta_1 < x_{(1)}) \mathbf{1}(x_{(n)} < \theta_2)$$

 $\implies T(X) = (X_{(1)}, X_{(n)}).$

Example 3. $X_1, \ldots, X_n \stackrel{iid}{\sim} U(-\theta, \theta), \ \theta > 0.$ (so $(X_{(1)}, X_{(n)})$ is sufficient)

$$f_{\theta}(x_1, \dots, x_n) = \prod_i \frac{\mathbf{1}(-\theta < x_i < \theta)}{2\theta}$$
$$= (2\theta)^{-n} \cdot \mathbf{1}(\max(-x_{(1)}, x_{(1)}) < \theta)$$

 $\implies T(X) = \max(-X_{(1)}, X_{(1)}).$

Definition 1.5. T(X) is called <u>minimal sufficient</u> if

- a) it is sufficient, and
- b) If S(X) is sufficient, $\exists w \text{ s.t. } T(X) = w \circ S(X)$

Theorem 1.6. Let $A = \{(x, y) \mid \exists k(x, y) \neq 0 \text{ s.t. } f_{\theta}(x) = k(x, y) f_{\theta}(y) \forall \theta \in \Theta\}$, and T is sufficient. T is minimal sufficient if

$$(x,y) \in A \implies T(x) = T(y).$$

Remark. Usually, we can follow the recipe below to show the minimal sufficiency of T:

- 1. Show T is sufficient.
- 2. Check $(x, y) \in A \implies T(x) = T(y);$
- 3. or if $\{x: f_{\theta}(x) \ge 0\}$ doesn't depend on θ , check $f_{\theta}(x)/f_{\theta}(y)$ indep. of $\theta \implies T(x) = T(y)$

Example 4. $X_1, \ldots, X_n \stackrel{iid}{\sim} U(\theta, -\theta), \ \theta > 0$. Notice that $f_{\theta}(x) = \theta^{-n} \mathbf{1}(x_{(n) < \theta})$. $\implies T(X) = X_{(n)}$ is sufficient.

- \implies Taking $(x, y) \in A$, we have, for some $k(x, y) \neq 0$,

$$\theta^{-n} \mathbf{1}(x_{(n)<\theta}) = k(x, y)\theta^{-n} \mathbf{1}(y_{(n)<\theta}).$$

 \implies T(x) = T(y). Thus, T is minimal sufficient.

Example 5. $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$. Obviously, $T = \sum X_i$ is sufficient.

If we assume

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \exp\left(\frac{1}{2}\left[\sum y_i^2 - \sum x_i^2\right]\right) \exp\left(\mu[T(x) - T(y)]\right)$$

is indep. of μ , we must have T(x) = T(y). By Theorem 1.6, T is minimal.

Complete statistics 1.3

Definition 1.7.

• Let $\mathcal{F} = \{f_{\theta} \mid \theta \in \Theta\}$ be a family of pmfs or pdfs. Then \mathcal{F} is complete if

$$\mathbf{E}_{\theta}g(X) = 0 \ \forall \theta \implies \mathbb{P}_{\theta}(g(X) = 0) = 1 \ \forall \theta.$$

• A statistic T is called complete if the induced family of distributions for T is complete, i.e.

$$\mathbf{E}_{\theta}g(T(X)) = 0 \ \forall \theta \implies \mathbb{P}_{\theta}(g(T(X)) = 0) = 1 \ \forall \theta.$$

Example 6. $X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Bin}(1, p), \ 0 Consider <math>T(X) = \sum_{i=1}^n X_i$. Then

$$\begin{aligned} \mathbf{E}_p g(T) &= \sum_{t=0}^n \mathbb{P}(T=t) \cdot g(t) \\ &= \sum_{t=0}^n g(t) \binom{n}{t} p^t (1-p)^{n-t} \\ &= (1-p)^n \sum_{t=0}^n g(t) \binom{n}{t} (\frac{p}{1-p})^t \end{aligned}$$

is a polynonial in $\frac{p}{1-p}$. Thus,

$$\mathbf{E}_p g(T) = 0 \ \forall p \implies g(t) \begin{pmatrix} n \\ t \end{pmatrix} = 0 \ \forall t.$$

It means g(t) = 0 for $t \in \{0, ..., n\}$. T is a complete statistic.

Example 7 (not complete). $X \sim Bin(n, p), p \in \{1/4, 3/4\}$, is not a complete family. Construct g s.t. the definition of competeness is not satisfied.

$$g(X) = (X - \frac{n}{4})(X - \frac{3n}{4}) - \frac{3n}{16}$$

1.4 Ancillary statistics

Definition 1.8. A statistic A is called ancillary if its distribution doesn't depend on θ .

Remark. Usually, we have two ways to prove something is ancillary:

- 1. Compute its distribution directly.
- 2. Check if $\mathbb{P}_{\theta}(A(X) \in B)$ is a function of θ .

Example 8. $X_i \stackrel{iid}{\sim} N_{(\mu}, \sigma_0^2)$. σ_0^2 known. We know that $S^2 \sim \frac{\sigma_0^2}{n-1}\chi_{n-1}^2$. It doesn't depend on θ . Moreover, by the Basu's theorem, \bar{X} is independent of S^2 .

Example 9. Let f be a pdf, and for $\theta \in \mathbb{R}$, set $f_{\theta}(x) = f(x - \theta)$ (location family).

If $X_i \stackrel{iid}{\sim} f_{\theta}$, $X_i - \bar{X}$ are all ancillary for θ . It is because $X_i - \bar{X}$ is location invariant. Let S be location invariant; that is

$$S(x) = S(x+c)$$

then we have

$$\mathbb{P}_{\theta}(S(\underline{X}) \in B) = \mathbb{P}_{\theta}(S(\underline{X} - \theta) \in B).$$

Notice that $\underline{X} - \theta$ doesn't depend on θ .

Example 10. Let f be a pdf, and for $\theta \in \mathbb{R}$, set $f_{\theta}(x) = \frac{1}{\theta} f(\frac{x}{\theta}), \theta > 0$ (location-scale family).

If $X_i \stackrel{iid}{\sim} \theta$, then $\frac{\bar{X}}{S}$ is ancillary for θ . It is because this statistic is location-scale invariant! So we don't need to compute its distribution.

We can summarize the two examples above as follow:

The following theorem sometimes could be used to prove independence.

Theorem 1.9 (Basu). If S is complete and sufficient, S is independent of any ancillary statistics.

Proof. Let A be ancillary and $Y = \mathbf{E}_{\theta}(\mathbf{1}(A \leq a)|S)$. To show that A is independent of S, it suffices to show

$$Y = \mathbf{E}_{\theta}(\mathbf{1}(A \le a)).$$

Clearly, $\mathbf{E}_{\theta}Y = \mathbb{P}(A \leq a)$. So $\mathbf{E}_{\theta}(Y - \mathbb{P}(A \leq a)) = 0$ holds for all θ . By completeness, $Y = \mathbb{P}(A \leq a)$ almost surely; that is A and S are independent.

1.5 Unbaised estimation

Definition 1.10. Let \mathcal{F}_{θ} be a family of distributions, and φ be a function of θ .

• A statistice T is <u>unbiased</u> for θ if

$$\mathbf{E}_{\theta}T = \varphi(\theta), \ \forall \theta \in \Theta.$$

• Any function φ is called <u>estimable</u> if there always exists an unbiased estimator.

Remark.

- Unbiased estimates may not exist.
- If T is unbiased for θ , q(T) may not be so for $q(\theta)$.
- Usually, we take $\varphi = \mathbf{Id}_{\Theta}$.

1.6 Uniform minimal variance unbaised estimation (UMVUE)

Definition 1.11. Let \mathcal{U} be the set of all unbaised estimators of $\varphi(\theta)$ that have finite variance. $T \in \mathcal{U}$ is called uniformly minimum variance unbiased estimator (UMVUE) of θ if

$$\operatorname{Var}_{\theta} T \leq \operatorname{Var}_{\theta} S, \quad \forall S \in \mathcal{U}, \ \forall \theta \in \Theta.$$

Remark. Invariance.

- If T_i is the UMVUE for ψ_i , then $\sum_{i=1}^n \lambda_i T_i$ is the UMVUE for $\sum_{i=1}^n \lambda_i \psi_i$.
- Let T_n be a sequence of UMVUEs. If $T_n \xrightarrow{L^2} T$, then T is also a UMVUE.

Theorem 1.12. Let $\mathcal{U}_0 = \{v : \mathbf{E}_{\theta}(v) = 0 \text{ and } \operatorname{Var}_{\theta}(v) < \infty\}$. Then $T \in \mathcal{U}$ is the UMVUE of $\varphi(\theta)$ if and only if $\mathbf{E}(Tv) = 0$ for all θ and for all $v \in \mathcal{U}_0$.

Theorem 1.13 (Rao-Blackwell). Let \mathcal{F}_{θ} be a paremetric family of distributions, and $h \in \mathcal{U}$ an unbiased estimator of $\psi(\theta)$. If T is sufficient for θ , then $\mathbf{E}(h|T) \in \mathcal{U}$ and

$$\operatorname{Var}_{\theta}\left(\mathbf{E}(h|T)\right) \leq \operatorname{Var}_{\theta}(h), \quad \forall \theta \in \Theta$$

with equality if and only if h is a function of T.

Theorem 1.14 (Lehmann-Scheffé). Suppose T is complete and sufficient. If there exists h s.t.

$$\mathbf{E}_{\theta}(h) = \psi(\theta) \text{ and } \operatorname{Var}_{\theta}(h) < \infty,$$

then $\mathbf{E}_{\theta}(h|T)$ is the UMVUE for ψ .

Remark.

- In Rao-Blackwell, we only require the sufficiency of T; however, in Lehmann-Scheffé, we require both of the completeness and sufficiency of T.
- By LS, we can follow this recipe to find the UMVUE:
 - 1. Find a complete sufficient statistic T and a unbiased estimate h.
 - 2. Compute $\mathbf{E}_{\theta}(h|T)$.

Example 11. $X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. Obviously, \overline{X} is complete and sufficient for $\lambda \in (0, \infty)$.

• Since $X_i \in \mathcal{U}$, and $T = \overline{X}$ is complete and sufficient, by LS,

$$\mathbf{E}(X_i|\bar{X}) = \bar{X}$$

is the UMVUE for λ . (Recall that $X_i | \sum_{j=1}^n X_j \sim \operatorname{Bin}(n\bar{X}, \frac{1}{n})$.)

• Or we can directly choose $h = \overline{X}$. Notice that $\mathbf{E}_{\lambda}(\overline{X}) = \lambda$, so \overline{X} is the UMVUE for λ .

Example 12. $X_i \stackrel{iid}{\sim} \text{Exp}(\lambda)$. Find the UMVUE of $\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \leq 1)$. A complete sufficient statistic is $T = \sum_{i=1}^{n} X_i$. And let

$$h(\underline{X}) = \mathbf{1}(X_j \le 1)$$

be a unbiased estimator for $\psi(\lambda)$. Therefore, the UMVUE of $\psi(\lambda)$ is

$$\mathbf{E}(h(X)|T) = \mathbb{P}(X_j \le 2|\sum_{i=1}^n X_i = t)$$
$$= \mathbb{P}(\frac{X_j}{\sum_{i=1}^n X_i} \le \frac{2}{t}|\sum_{i=1}^n X_i = t)$$
$$= \mathbb{P}(\frac{X_j}{\sum_{i=1}^n X_i} \le \frac{2}{t})$$
$$= \mathbb{P}(Z \le \frac{2}{t})$$

where $Z \sim \text{Beta}(1, n-1)$. Finally, we get the UMVUE of $\psi(\lambda)$:

$$\mathbf{E}(h(X)|T) = \begin{cases} 1 & T \le 1; \\ 1 - (1 - \frac{1}{T})^{n-1} & T > 1. \end{cases}$$

Proposition 1.15. If T is complete and sufficient, and $\mathbf{E}_{\theta}(T^2)$ is finite for all θ , then T is minimal sufficient.

Proof. By LS, T is UMVUE for $\mathbf{E}_{\theta}(T)$. Let S be any sufficient statistic, and define

$$h(S) = \mathbf{E}_{\theta}(T|S).$$

Obviously, it is unbiased for $\mathbf{E}_{\theta}(T)$ and satisfies

$$\operatorname{Var}_{\theta}(h(S)) \leq \operatorname{Var}_{\theta}(T)$$

by Rao-Blackwell. However, as T is the UMVUE, by the uniqueness, h(S) = T almost surely; i.e. T is a function of S. By the definiton, T is minimal sufficient.

1.7 Lower bound for variance in unbiased estimation

Definition 1.16. Let \mathcal{F}_{Θ} be a parametric family of distributions for a RV X.

• <u>The score function</u> is defined as

$$\frac{\partial}{\partial \theta} \log f_{\theta}(x)$$

• The Fisher information is defined as the variance of the score function:

$$I(\theta) = \operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)$$

Remark. If $X_i \stackrel{iid}{\sim} f_{\theta}$, let $I_n(\theta)$ denote the FI for $\prod f_{\theta}(x)$.

Proposition 1.17 (Properties of Fisher information). Under regularity conditions, we have:

• $I(\theta) = \mathbf{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^2 \right) = -\mathbf{E}_{\theta} \left(\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(x) \right);$

•
$$I_n(\theta) = nI_1(\theta).$$

Theorem 1.18. If $\Theta \subset \mathbb{R}$ is an open interval and

- (i) $s = \{x : f_{\theta}(x) > 0\}$ is indep. of θ
- (ii) The score exists and is finite for all $x \in s, \ \theta \in \Theta$.
- (iii) $\exists \mathbf{E}_{\theta}(h(x))$ for all θ implies:

$$\int h(X) \frac{\partial}{\partial \theta} f_{\theta}(x) \, \mathrm{d}x = \frac{\partial}{\partial \theta} \int h(x) f_{\theta}(x) \, \mathrm{d}x.$$

then if T is an unbiased estimator of $\varphi(\theta)$, and $0 < I(t) < \infty$,

$$\operatorname{Var}_{\theta}(T) \ge \frac{[\varphi'(\theta)]^2}{I(\theta)}.$$

Remark.

• The lower bound is attained if and only if $T(\underline{X})$ and $\frac{\partial}{\partial \theta} \log f(\underline{X})$ are perfectly correlated, that is,

$$T(X) - \psi(\theta) = k(\theta) \frac{\partial}{\partial \theta} \log f(\underline{X})$$

for some function $k(\theta)$.

• If $\theta \in \mathbb{R}^k$,

$$\operatorname{Var}_{\theta}(T(X)) \ge \psi'(\theta)^T I(\theta)^{-1} \psi(\theta).$$

• Suppose $\eta = \eta(\theta)$ is strictly monotonic, then

$$I(\eta) = \operatorname{Var}(\frac{\partial}{\partial \eta} \log f_{\eta}(X)) = \operatorname{Var}(\frac{\partial}{\partial \theta} \cdot \frac{\partial \theta}{\partial \eta} \cdot \log f_{\theta}(X)) = I(\theta) \cdot (\frac{\mathrm{d}\theta}{\mathrm{d}\eta})^{2}.$$

and letting $\tilde{\psi}(\eta) = \psi(\theta)$,

$$\frac{\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\psi(\theta)\right]^2}{I(\theta)} = \frac{\left[\frac{\mathrm{d}}{\mathrm{d}\eta}\frac{\mathrm{d}\eta}{\mathrm{d}\theta}\psi(\theta)\right]^2}{I(\eta)/(\frac{\mathrm{d}\theta}{\mathrm{d}\eta})^2} = \frac{\left[\frac{\mathrm{d}}{\mathrm{d}\eta}\tilde{\psi}(\eta)\right]^2}{I(\eta)}.$$

- Note: Scale families with bounded support and $U(0, \theta)$ don't satisfy the conditions.
- If a unbiased estimator attains the lower bound of variance, then it is UMVUE!

Example 13. $X_i \stackrel{iid}{\sim} \operatorname{Exp}(\lambda)$. Then

$$f_{\lambda}(x) = \frac{1}{\lambda^n} e^{-T(x)/\lambda} \mathbf{1}(X_{(1)} > 0).$$

- Compute the Fisher information for λ $\implies T(X) = \sum_{i=1}^{n} X_i, \ \frac{\partial}{\partial \lambda} \log f_{\lambda}(x) = T(X)/\lambda^2 - n = n\bar{X}/\lambda^2 - n.$ $\implies I(\lambda) = \operatorname{Var}_{\lambda}(T(X)/\lambda^2) = \frac{1}{\lambda^4}n\lambda^2 = \frac{n}{\lambda^2}.$
- Lower bound for variance of λ
 - \implies If S(X) is unbiased for λ , $\operatorname{Var} S(X) \ge \frac{1}{I(\lambda)} = \frac{\lambda^2}{n} = \operatorname{Var}_{\lambda}(\bar{X}).$
- Lower bound for variance of $\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \leq 1)$ For $\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \leq 1), \ \psi'(\lambda) = -e^{-1/\lambda}/\lambda^2$ \implies If S(X) is unbiased for $\psi(\lambda), \ \operatorname{Var}S(X) \geq \frac{[\psi'(\lambda)]^2}{I(\lambda)} = e^{-2/\lambda}/n\lambda^2.$

Theorem 1.19. Assume $\theta \mapsto f_{\theta}$ is injective, and T is unbiased for $\psi(\theta)$, and $\mathbf{E}_{\theta}(T(X)) < \infty$. Let $\theta \in \Theta$ and

$$S_{\theta} = \Big\{ \varphi \in \Theta : \{ x : f_{\varphi}(x) > 0 \} \subset \{ x : f_{\theta}(x) > 0 \} \Big\} \setminus \Big\{ \theta \Big\}.$$

Then

$$\operatorname{Var}_{\theta}(T(X)) \ge \sup_{\varphi \in S_{\theta}} \frac{[\psi(\varphi) - \psi(\theta)]^2}{\operatorname{Var}_{\theta}(\frac{f_{\varphi}(x)}{f_{\theta}(x)})}$$

Example 14. $X \sim U(0,\theta)$. Then $S_{\theta} = (0,\theta)$. And 2X is the UMVUE for θ with the variance

$$\operatorname{Var}(2X) = 4\operatorname{Var}X = \frac{\theta^2}{3}.$$

Notice that $\frac{f_{\varphi}}{f_{\theta}} = (\frac{\theta}{\varphi}) \cdot \mathbf{1}(0, \varphi)$ for $\varphi \in S_{\theta} = (0, \theta)$. Then

$$\sup_{0 < \varphi < \theta} \frac{[\varphi - \theta]^2}{\operatorname{Var}_{\theta}[(\frac{\theta}{\varphi}) \cdot \mathbf{1}(0, \varphi)]} = \sup_{0 < \varphi < \theta} \frac{(\varphi - \theta)^2}{\frac{\theta^2}{\varphi^2} \cdot \frac{\varphi}{\theta} \cdot (1 - \frac{\varphi}{\theta})}$$
$$= \sup_{0 < \varphi < \theta} \frac{(\varphi - \theta)^2}{\frac{\theta}{\varphi} - 1}$$
$$= \frac{\theta^2}{4}$$

Although 2X is the UMVUE, $\operatorname{Var}(2X) > \frac{\theta^2}{4}$.

1.8Exponential family: Part I

Definition 1.20. Let $\{f_{\theta}\}$ be a family of PDFs with

$$f_{\theta}(x) = h(x) \exp \Big\{ \sum_{j=1}^{k} Q_i(\theta) T_j(x) + D(\theta) \Big\}.$$

Theorem 1.21 (Sufficient and complete statistics). Let $\mathcal{F}_{\theta} = \{f_{\theta} : \theta \in \Theta\}$ be a k-parameter exponential family on \mathbb{R}^n , where $\Theta \subset \mathbb{R}^k$ is an interval and $k \leq n$. Then

a) T is sufficient.

b) If the range of (Q_1, \ldots, Q_k) contains an open set in \mathbb{R}^k , T is complete.

The theorem above gives a simple way to find sufficient statistics (see the example below); however, T may not be complete in general.

Example 15. $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2), \ \mu \in \mathbb{R}, \ \sigma^2 > 0.$

We re-write its pdf as the form of exponential family:

$$f_{\mu,\sigma^2}(x) = (2\pi)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2} \log(\sigma^2)\right\}$$
$$= (2\pi)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2} - \frac{n}{2} \log(\sigma^2)\right\}$$

Thus, $T_1(X) = \sum_{i=1}^n X_i$, $T_2(X) = \sum_{i=1}^n X_i^2$, and (T_1, T_2) is sufficient. Moreover, we are interested in its completeness. Notice that $Q_i(\mu, \sigma^2) = \frac{\mu}{\sigma^2}$ and $Q_2(\mu, \sigma^2) = -\frac{1}{2\sigma^2}$. The range of $Q = (Q_1, Q_2)$ is $\mathbb{R} \times \mathbb{R}^-$, and it contains an open set in \mathbb{R}^2 . So T is complete.

Example 16. $X_i \stackrel{iid}{\sim} N(\theta, \theta^2), \ \theta > 0.$

Obviously, (T_1, T_2) is still sufficient for θ , since

$$f_{\theta}(x) = (2\pi)^{-n/2} \exp\left\{\frac{1}{\theta}T_1(x) - \frac{1}{2\theta^2}T_2(x) + D(\theta)\right\}.$$

However, T is not complete.

Notice that $T_1 \sim N(n\theta, n\theta^2) \implies \mathbf{E}_{\theta} T_1^2(X) = n(n+1)\theta^2$. Similarly, $\mathbf{E}_{\theta} T_2(X) = 2n\theta^2$. So $\mathbf{E}_{\theta}\left(2T_1^2(X) - (n+1)T_2(X)\right) = 0, \forall \theta.$

Thus, we can construct $g: (t_1, t_2) \mapsto 2t_1^2 - (n+1)t_2$ that is not identically 0 on $\mathbb{R} \times \mathbb{R}^+$.

1.9 Methods of moment

Definition 1.22. The method of moments estimator of $\theta = h(m_1, \ldots, m_k)$ is

$$T_h = h(\hat{m}_1, \dots, \hat{m}_k)$$

where $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. *Remark.* Note: $m_n := \mathbf{E} X^n$. And $m_{n_1,\dots,n_k} := \mathbf{E} X_1^{n_1} \dots X_k^{n_k}$.

Example 17. $X_i \stackrel{iid}{\sim} \operatorname{Bin}(m,p)$. $h(p) = \mathbb{P}_p(X_1 = 2) = \binom{m}{2} \frac{(mp)^2}{m^2} (1 - \frac{mp}{m})^{m-2}$.

The method of moments estimator is

$$T_h(X) = \binom{m}{2} \frac{(\bar{X}^2)^2}{m^2} (1 - \frac{\bar{X}}{m})^{m-2}.$$

Example 18. $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$. $h(\mu, \sigma^2) = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} \mu \\ \mathbf{E}(X^2) - \mu^2 \end{pmatrix}$. The method of moments estimator is

$$T_h(X) = \begin{pmatrix} \bar{X} \\ \frac{1}{n} \sum X_i^2 - \bar{X}^2 \end{pmatrix} = \begin{pmatrix} \bar{X} \\ \frac{n-1}{n} S^2 \end{pmatrix}.$$

2 Maximum likelihood

2.1 Maximum likelihood estimators (MLE)

Definition 2.1. Let \mathcal{F}_{Θ} be a family of pmfs/pdfs.

• <u>The likelihood function</u> is

$$L(\theta; x) = f_{\theta}(x), \quad \theta \in \Theta.$$

• The log-likelihood is $\underline{}$

$$l(\theta; x) = \log L(\theta; x).$$

Remark. If $X_i \stackrel{iid}{\sim} f_{\theta}$, then $L(\theta; X) = \prod_{i=1}^n f_{\theta}(X_i)$ and $l(\theta; X) = \sum_{i=1}^n \log f_{\theta}(X_i)$.

Definition 2.2. If $X_i \stackrel{iid}{\sim} f_{\theta}$ and X = x is observed.

 $\hat{\theta}(x) = \arg \max_{\theta \in \Theta} L(\theta; x),$

if it exists, is called a maximum likelihood estimate of θ .

Remark. By the strict monotonity of log, we have

$$\hat{\theta}(x) = \arg \max_{\theta \in \Theta} l(\theta; x) = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} f_{\theta}(x_i)$$

Example 19. $X_i \stackrel{iid}{\sim} \text{Poisson}(\theta), \ \Theta = (0, \infty).$

Compute its likelihood function:

$$L(\theta; x) = e^{-n\theta} \cdot \frac{e^{(\log \theta) \cdot \sum x_i}}{\prod x_i!}$$
$$l(\theta; x) = (\sum x_i) \log \theta - n\theta - \sum \log(x_i!)$$

Compute its partial derivatives:

$$\frac{\partial}{\partial \theta} = \frac{\sum x_i}{\theta} - n = 0 \implies \theta = \bar{x}$$
$$\frac{\partial^2}{\partial \theta^2} = -\frac{\sum x_i}{\theta^2} \le 0$$

Thus, $\hat{\theta}(x) = \bar{x}$ is the MLE except when $\bar{x} = 0$; because when $\bar{x} = 0, \theta = 0 \notin \Theta$.

Example 20. $X_i \stackrel{iid}{\sim} U(\theta_1, \theta_2).$

Compute its likelihood function:

$$L(\theta; x) = \prod f_i(x_i) = \prod \left(\frac{1}{\theta_2 - \theta_1} \mathbf{1}(\theta_1 \le x_i \le \theta_2)\right)$$
$$= \begin{cases} 0 & \theta_1 \ge x_{(1)} \text{ or } \theta_2 < x_{(n)} \\ \frac{1}{(\theta_2 - \theta_1)^n} & \text{ o.w.} \end{cases}$$

Notice: when $\theta_1 \leq x_{(1)}$ and $\theta_2 \geq x_{(n)}$,

$$(\theta_2 - \theta_1) \downarrow \Longrightarrow \quad L(\theta; x) \uparrow .$$

Therefore, $(\hat{\theta}_1, \hat{\theta}_2) = (x_{(1)}, x_{(n)})$ is the MLE.

Proposition 2.3. Let T be sufficient for θ for a family of pdfs/pmfs. If an MLE exists, there is an MLE such that $\hat{\theta} = g(T)$.

Proof. Compute its likelihood function:

$$L(\theta; x) = f_{\theta}(x)$$

(By Thm 1.4.) = $h(x)g_{\theta}(T(x))$

Assume θ^* maximizes $L(\theta; x)$. It also maximizes $w_x(\theta) = g_\theta(T(x))$.

Define $S(x) = \{\theta^* \in \Theta : g_{\theta^*}(T(x)) = \max_{\theta} g_{\theta}(T(x))\}$. (Note: the maxima may not be unique.) Notice that $T(x) = T(y) \implies S(x) = S(y)$, so we can choose $\hat{\theta}(x) \in S(x)$ such that it is a function of T(x).

2.2 Uniqueness and existence of MLEs

The following example shows: (1) MLE may not be unique. (2) MLE could be a function of T; however, some MLEs may not be a function of T.

Example 21. $X_i \stackrel{iid}{\sim} U(\theta - 1, \theta + 1).$

Compute its likelihood function:

$$L(\theta; x) = \frac{1}{2^n} \cdot \mathbf{1}(x_{(1)} \ge \theta - 1) \cdot \mathbf{1}(x_{(n)} \le \theta + 1)$$

= $\frac{1}{2^n} \cdot \mathbf{1}(x_{(n)} - 1 \le \theta \le x_{(1)} + 1)$

⇒ any estimator $\hat{\theta}(x) \in [x_{(n)} - 1, x_{(1)} + 1]$ is an MLE. (not unique) In particular,

$$\hat{\theta}(x) = \alpha(x_{(n)} - 1) + (1 - \alpha)(x_{(1)} + 1)$$

for $0 \le \alpha \le 1$ is an MLE that is a function of $T = (x_{(1)}, x_{(n)})$; however, so is

$$\sin^2(\bar{x})(x_{(n)}-1) + \cos^2(\bar{x})(x_{(1)}+1),$$

not a function of T.

Theorem 2.4.

• Existence

Suppose $l: \Theta \to \mathbb{R}, \Theta$ open in \mathbb{R}^k , is continuous. If $l(\theta; x) \to -\infty$ as $\theta \to \partial\Theta$, then

$$\{\theta \in \Theta : l(\theta) = \max_{\theta \in \Theta} l(\theta)\} \neq \emptyset.$$

• Existence and uniqueness

Suppose $X \sim f_{\theta}, \theta \in \Theta \subset \mathbb{R}^k$ open set. If $l(\theta; x)$ is strictly convave, is continuous, and moreover, $l(\theta; x) \longrightarrow -\infty$ as $\theta \to \partial \Theta$, then the MLE exists and is unique.

2.3 Exponential family: Part II

Lemma 2.5. Let \mathcal{F}_{η} be a k-parameter exponential family in canonical parameter. The following statements are equivalent:

- a) The log-likelihood function $l(\eta; x)$ is strictly convave
- b) $A(\eta)$ is strictly convex
- c) $A''(\eta) = \operatorname{Var}(T) > 0$ (aka full rank).

Theorem 2.6. Suppose \mathcal{F}_{Θ} is a k-parameter exponential family with

$$f_{\eta} = h(x) \exp\left\{\sum_{j=1}^{k} \eta_j T_j(x) - A(\eta)\right\}$$

such that Θ is open and $A''(\eta) > 0$. Let x be the deserved value and $t_0 = T(x) \in \mathbb{R}^k$.

a) If $\mathbb{P}_{\eta}(c^T T(x) > c^T t_0) > 0$ for all $c \neq 0, \eta \in \Theta$, then $\hat{\eta}$ exists, is unique, and satisfies

$$A'(\hat{\eta}(x)) = \mathbf{E}_{\hat{\eta}(x)}(T(x)) = t_0.$$

b) If $\exists c \neq 0$ such that $\mathbb{P}(c^T T(x) > c^T t_0) = 0$, there is no MLE.

Corollary 2.7. Let C_T be the convex hull of the support of T. Then the MLE exists and is unique if and only if $t_0 \in C_T^{\circ}$.

Corollary 2.8. If T has a continuous distribution, the MLE exists and is unique.

Corollary 2.9. Let the exponential family be

$$f_{\theta}(x) = h(x) \exp \Big\{ \sum_{j=1}^{k} Q_j(\theta) T_j(x) - B(\theta) \Big\}.$$

If $\mathbf{E}_{\theta}T_j = T_j$ have a solution $\hat{\theta}(X) \in Q(\Theta)^\circ$, it is the unique MLE.

Example 22. $X \sim Bin(n, \theta)$. Then $\hat{\theta} = \frac{X}{n}$ is the MLE unless X = 0.

Example 23. $X_i \stackrel{iid}{\sim} \text{Gamma}(\alpha, \beta)$. The MLE exists and is unique.

2.4 Invariance

Theorem 2.10. Let \mathcal{F}_{θ} be a family of pdfs/pmfs, $\theta \in \mathbb{R}^k$. If $\hat{\theta}$ is an MLE and $h : \mathbb{R}^k \to \mathbb{R}^p$ with $p \leq k$, then $h(\hat{\theta})$ is an MLE for $h(\theta)$.

Example 24. $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2), \ \mu \in \mathbb{R} \text{ and } \sigma > 0.$ Obviously, $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ are MLEs for μ and σ^2 . We may be interested in the MLE of μ/σ .

Let $h: (x,y) \mapsto \frac{x}{y}$, then $h(\hat{\mu}, \hat{\sigma})$ is the MLE for $h(\mu, \sigma)$. Thus, the MLE for μ/σ is $\bar{X}/\hat{\sigma}$.

2.5 Asymptotic consistency and normality

Theorem 2.11 (Wald). Recall that $D(\theta_0, \theta) = \mathbf{E}_{\theta_0}(\log f_{\theta}(x))$. Suppose

$$\sup_{\theta \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} \log f_{\theta}(x) - D(\theta_0, \theta) \right) \xrightarrow{\mathbb{P}} \theta_0 0,$$

and for all $\epsilon > 0$,

$$\sup_{\theta:|\theta-\theta_0|\geq\epsilon} D(\theta_0,\theta) < D(\theta_0,\theta_0)$$

Then we have

$$\hat{\theta} \xrightarrow[\theta_0]{\mathbb{P}} \theta_0.$$

Remark. Generally, consistency of $\hat{\theta}$ can be found in other ways (e.g. continuous mapping theorem, WLLN).

The following theorem gives a sufficient conditions for a sequence of MLEs $\hat{\theta}_n$ based on a sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$ to be asymptotically normal. Let $\theta_0 \in \Theta$ be the true parameter.

Theorem 2.12. If the following conditions hold

(A1) The score function ψ is well-defined and $0 < I(\theta) < \infty$;

- (A2) $\frac{\partial^2}{\partial \theta^2} \psi(x;\theta)$ is continuous;
- (A3) For some ϵ , g such that $\mathbf{E}_{\theta_0}g(X) < \infty$,

$$\sup_{|\theta - \theta_0| \le \epsilon} \left| \frac{\partial^2}{\partial \theta^2} \psi(x; \theta) \right| < g(x);$$

and $\hat{\theta}_n$ exists, is unique, and is consistent under H_0 , then

$$\hat{\theta} = \theta_0 + \frac{1}{nI(\theta_0)} \sum_{i=1}^n \psi(X_i; \theta) + o_p(n^{-1/2}),$$

and

$$\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{D} N(0, I^{-1}(\theta_0))$$

Remark. For suitable h, we can also show AN of $h(\hat{\theta})$ using the delta-method. **Example 25.** $X_i \stackrel{iid}{\sim} \text{Gamma}(\alpha, 1)$. The MLE $\hat{\alpha}$ is the solution to

$$\frac{n\Gamma'(\alpha)}{\Gamma(\alpha)} = \sum_{i=1}^{n} \log(X_i).$$

It can only be computed numerically. If we want to do inference for α , since

$$I(\alpha) = -\mathbf{E}_{\alpha} \left(\frac{\partial^2}{\partial \alpha^2} \log f_{\alpha}(x) \right) = \frac{\Gamma''(\alpha) \Gamma(\alpha) - \Gamma'(\alpha)^2}{\Gamma(\alpha)^2},$$
$$\sqrt{nI(\alpha)} (\hat{\alpha} - \alpha) \xrightarrow{D}_{\alpha} N(0, 1).$$

Example 26. $X_i \stackrel{iid}{\sim} U(0,\theta)$. The conditions for AN do not hold. Its MLE is $\hat{\theta} = X_{(n)}$. So

 $n(\theta - \hat{\theta}) \xrightarrow{D} \operatorname{Exp}(\theta).$

3 Hypothesis Testing

Introduction to hypothesis testing 3.1

Definition 3.1. Let φ be a test, and $\beta_{\varphi}(\theta) = \mathbf{E}_{\theta}(\varphi(X))$.

• The size of a test φ is defined as

$$\sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta) = \sup_{\theta \in \Theta_0} \mathbf{E}_{\theta}(\varphi(X))$$

• Let φ be a test of size α . For any $\theta \in \Theta_1$, the power of φ for detecting θ is

$$\beta_{\varphi}(\theta) = \mathbf{E}_{\theta}(\varphi(X)) = \mathbb{P}_{\theta}(H_0 \text{ rejected}).$$

Remark. As a function of θ , β_{φ} is called the power function. If $\varphi(X) = \mathbf{1}(T(X) \in C)$, T is called a test statistic, and C is called the critical region.

The size is also called the Type I error; it represents the probability that H_0 is correct, but we reject it. The power is also called the Type II error; it represents the probability that H_0 is wrong, but we accept it.

Example 27. $X_i \stackrel{iid}{\sim} N(\mu, \sigma^s), \ \mu \in \mu_0, \mu_1 \ (\mu_0 < \mu_1), \ \text{and} \ \sigma^2 > 0 \ \text{known.} \ H_0 : \mu = \mu_0 \ \text{vs} \ H_1 : \mu = \mu_1.$ Conider a rule $\varphi(\bar{X}) = \mathbf{1}(\bar{X} > k)$, for some k, corresponding to the critical region $c_k = \{X : \bar{X} > k\}.$ Fix its size:

$$\beta_{\varphi}(\mu_0) = \mathbb{P}_{\mu_0}(\bar{X} > k) = 1 - \Phi(\frac{\sqrt{n}(k - \mu_0)}{\sigma}) = \alpha.$$

so we take k s.t. $\frac{\sqrt{n}(k-\mu_0)}{\sigma} = \Phi^{-1}(1-\alpha) = z_{1-\alpha}$; i.e.

$$k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha},$$

leading the test

$$\varphi(\bar{X}) = \begin{cases} 1 & \bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \\ 0 & \text{o.w.} \end{cases}$$

The power function is given by

$$\beta_{\varphi}(\mu_1) = \mathbb{P}_{\mu_1}(\bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}) = 1 - \Phi(\frac{\sqrt{n}(\mu_0 - \mu_1)}{\sigma} + z_{1-\alpha}).$$

Definition 3.2. Let Φ_{α} be all test functions of size $\leq \alpha$. Then $\varphi^* \in \Phi_{\alpha}$ is said to be most powerful against $\theta \in \Theta_1$, if

$$\beta_{\varphi^*}(\theta) \ge \beta_{\varphi}(\theta) \quad \forall \varphi \in \Phi_{\alpha}.$$

And φ^* is said to be uniformly most powerful if

$$\beta_{\varphi^*}(\theta) \ge \beta_{\varphi}(\theta) \quad \forall \varphi \in \Phi_{\alpha}, \ \theta \in \Theta_1.$$

3.2Neyman-Pearson theory

Theorem 3.3 (Neyman-Pearson). Let $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, be simple hypothese. Then a) any test of the form

$$\varphi(x) = \begin{cases} 1 & f_1(x) > kf_0(x) \\ \gamma(x) & f_1(x) = kf_0(x) \\ 0 & f_1(x) < kf_0(x) \end{cases}$$
(1)

for $k \ge 0$ and $0 \le \gamma(x) \le 1$ is most powerful for its size.

b) Given $\alpha \in (0,1)$, there exists a test of the form above with $\gamma(x) = \gamma$ a constant s.t. φ has size α .

Proof. This proof is important. Because it gives us a method to construct the most powerful test under the simple hypothese.

For part (a), let φ^* be a test which size is less than φ ; that is,

$$\mathbf{E}_{\theta_0}\varphi^*(X) \leq \mathbf{E}_{\theta_0}\varphi(X).$$

We hope prove $\mathbf{E}_{\theta_1} \varphi^*(X) \leq \mathbf{E}_{\theta_1} \varphi(X)$. Notice that

$$\begin{aligned} \mathbf{E}_{\theta_1}\varphi(X) - \mathbf{E}_{\theta_1}\varphi^*(X) &\leq \mathbf{E}_{\theta_1}\varphi(X) - \mathbf{E}_{\theta_1}\varphi^*(X) - k\big[\mathbf{E}_{\theta_0}\varphi(X) - \mathbf{E}_{\theta_0}\varphi^*(X)\big] \\ &= \int D(x)[f_1(x) - kf_0(x)] \,\mathrm{d}x \end{aligned}$$

where $D := \varphi - \varphi^*$. Let $A_0 = \{f_1 < kf_0\}$ and $A_1 = \{f_1 > kf_0\}$. In continuous case,

$$\int D(x)[f_1(x) - kf_0(x)] \, \mathrm{d}x = \int_{A_0} D(x)[f_1(x) - kf_0(x)] \, \mathrm{d}x + \int_{A_1} D(x)[f_1(x) - kf_0(x)] \, \mathrm{d}x$$
$$\geq 0$$

by noticing that $D \leq 0$ on A_0 and $D \geq 0$ on A_1 .

Part (b). Let $\alpha \in (0, 1]$. We want to find a test of the form (1) with size α where $\gamma(x)$ is a constant γ . Thus, we have the following equation:

$$\mathbf{E}_{\theta_0}\varphi(X) = \alpha;$$

that is,

$$\mathbb{P}_{\theta_0}\Big(f_1(X) > kf_0(X)\Big) + \gamma \mathbb{P}_{\theta_0}\Big(f_1(X) = kf_0(X)\Big) = \alpha$$
$$\mathbb{P}_{\theta_0}\Big(f_1(X) \le kf_0(X)\Big) - \gamma \mathbb{P}_{\theta_0}\Big(f_1(X) = kf_0(X)\Big) = 1 - \alpha$$

Let $\lambda = \frac{f_1}{f_0}$. G_0 be the CDF of λ under θ_0 . So we have

$$G_0(k) - \gamma \mathbb{P}_{\theta_0} \Big(\lambda(X) = k \Big) = 1 - \alpha.$$
⁽²⁾

Define $k = G_0^{-1}(1 - \alpha) = \inf\{\tilde{k} : G_0(\tilde{k}) > 1 - \alpha\}.$

- Case (i). If G_0 is continuous at k, let $\gamma = 0$.
- Case (ii). If G_0 is not continuous at k, let $\gamma = \frac{G_0(k) (1-\alpha)}{\mathbb{P}_{\theta_0}(\lambda(X) = k)}$.

Proposition 3.4. If T is sufficient for X, the NP test is a function of T. **Example 28.** $X \sim \text{Poisson}(\lambda), H_0 : \lambda = \lambda_0 = 1 \text{ vs } H_1 : \lambda = \lambda_1 = 2.$

• Compute the CDF of $\frac{f_1}{f_0}$: Since $\frac{f_1(x)}{f_0(x)} = \frac{e^{-\lambda_1}\frac{\lambda_1^2}{x^1}}{e^{-\lambda_0}\frac{\lambda_0^2}{x^1}} = e^{\lambda_0 - \lambda_1} \left(\frac{\lambda_1}{\lambda_0}\right)^x = \frac{2^x}{e},$ $\mathbb{P}_{\lambda_0}\left(\frac{f_1(X)}{f_0(X)} \le k\right) = \mathbb{P}_{\lambda_0}\left(\frac{2^X}{e} \le k\right) = \mathbb{P}_{\lambda_0}(X \le \frac{\ln k + 1}{\ln 2}).$ • Compute k and γ :

The formula (2) becomes:

$$\mathbb{P}_{\lambda_0}(X \le \frac{\ln k + 1}{\ln 2}) - \gamma \mathbb{P}_{\lambda_0}(\frac{2^X}{e} = k) = 1 - \alpha.$$

If $\alpha = 0.05$, $F_{\lambda_0}^{-1}(1 - \alpha) = 3$, so we set $k = \frac{8}{e}$,

$$\gamma = \frac{0.981 - 0.95}{0.061} = 0.5$$

and thus the NP test is

$$\varphi(x) = \begin{cases} 1 & x > 3\\ 0.5 & x = 3\\ 0 & x < 3 \end{cases}$$

The test statistic is X itself, while the p-value is $\mathbb{P}_{\lambda}(X > x_0)$, where x_0 is the observed value (since $\lambda_1 > \lambda_0$).

3.3 Monotone likelihood ratio (MLR) property

Definition 3.5. Let \mathcal{F}_{Θ} be a family of pdfs/pmfs, where $\Theta \subset \mathbb{R}$ is an interval. We say \mathcal{F}_{Θ} has the monotone likelihood ratio (MLR) property in T(X) if, for $\theta_1, \theta_2 \in \Theta, \theta_1 < \theta_2, \frac{f_{\theta_2}(x)}{f_{\theta_1}(x)}$ is an non-decreasing function of T(X) on $\{x : f_{\theta_1}(x) \neq 0 \text{ or } f_{\theta_2}(x) \neq 0\}$.

Example 29. $X_i \stackrel{iid}{\sim} U(0,\theta), \ \theta > 0$. Let $\theta_1 < \theta_2$, so for $x \in \mathbb{R}^n$ such that $x_{(n)} < \theta_2$,

$$\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)} = \frac{(\frac{1}{\theta_2})^n \mathbf{1}(x_{(n)} < \theta_2)}{(\frac{1}{\theta_1})^n \mathbf{1}(x_{(n)} < \theta_1)}$$
$$= \frac{\theta_1^n}{\theta_2^n} \cdot \frac{1}{\mathbf{1}(x_{(n)} < \theta_1)}$$
$$= \begin{cases} \frac{\theta_1^n}{\theta_2^n} & \theta_{(1)} > x_{(n)} \\ \infty & \theta_{(1)} \le x_{(n)} < \theta_2 \end{cases}$$

 \implies it has the MLR in $T(X) = X_{(n)}$.

Example 30. $X_i \stackrel{iid}{\sim} N(0, \sigma^2), \ \sigma^2 > 0.$ Let $\sigma_1^2 < \sigma_2^2$.

$$\frac{f_{\sigma_2}(x)}{f_{\sigma_1}(x)} = \frac{\sigma_1^n}{\sigma_2^n} + \frac{1}{2}(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2})\sum_{i=1}^n x_i^2;$$

so it has the MLR property in $T(X) = \sum_{i=1}^{n} X_i^2$.

Theorem 3.6.

• If $X \sim f_{\theta}$, where $\{f_{\theta} : \theta \in \Theta\}$ has the MLR property in T(X), then for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, any test of the form

$$\varphi(x) = \begin{cases} 1 & T(x) > t_0 \\ \gamma & T(x) = t_0 \\ 0 & T(x) < t_0 \end{cases}$$

has $\beta_{\varphi}(\theta)$ non-decreasing and is UMP for size $\alpha = \mathbf{E}_{\theta_0}(\varphi(X))$ if this is non-zero.

• Also, for any $\alpha \in (0,1)$, $\exists t_0 \in \mathbb{R}$ and $\gamma \in (0,1)$ s.t. the above test is UMP of size α .

Example 31. $X_i \stackrel{iid}{\sim} \text{Gamma}(\alpha, 1), \ \alpha > 0$. Find a UMP test for $H_0 : \alpha \ge \alpha_0$ vs $H_1 : \alpha < \alpha_0$. Note that

$$f(x) = \frac{1}{[\Gamma(\alpha)]^n \prod_{i=1}^n x_i} \exp\left\{\alpha \sum_{i=1}^n n \log x_i - \sum_{i=1}^n x_i\right\}$$

has the MLR property in $T(x) = \sum_{i=1}^{n} \log(x_i)$. Therefore, applying the theorem, any test of the form

$$\varphi(x) = \begin{cases} 1 & T(x) < t_0 \\ 0 & T(x) \ge t_0 \end{cases}$$

is UMP for its size $\alpha^* = \mathbf{E}_{\alpha_0}(\varphi(X))$.

For a fixed $\alpha^* \in (0,1)$, let F_0 be the CDF of T(X) under α_0 , and choose $t_0 = F^{-1}(\alpha^*)$, so that

$$\mathbf{E}_{\alpha_0}(\varphi(X)) = \mathbb{P}_{\alpha_0}(T(X) < t_0) = \alpha^*.$$

3.4 Unbiased tests

Definition 3.7.

• A test φ of $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ is said to be unbiased at size α if

$$\begin{aligned} \beta_{\varphi}(\theta) &\leq \alpha \quad \forall \theta \in \Theta_0 \\ \beta_{\varphi}(\theta) &\geq \alpha \quad \forall \theta \in \Theta_1 \end{aligned}$$

- Let U_{α} be the class of all unbiased size α tests.
- If $\exists \varphi \in U_{\alpha}$ s.t. $\beta_{\varphi}(\theta) \geq \beta_{\varphi'}(\theta) \ \forall \varphi' \in U_{\alpha}, \ \forall \theta \in \Theta_1$, then φ is called a UMP unbiased test.

Definition 3.8.

• A test φ is said to be α -similar on $\Theta^* \subset \Theta$ if

$$\beta_{\varphi}(\theta) = \alpha \quad \forall \theta \in \Theta^*.$$

- Let $\Lambda = \overline{\Theta}_0 \cap \overline{\Theta}_1$.
- A test which is UMP over all tests that are α -similar on Λ is said to be a UMP α -similar test.

Remark. If $\beta_{\varphi}(\theta)$ is continuous in θ for all φ , then any unbiased size α test φ is α -similar on Λ .

It is easier to find a UMP α -similar test than to find a UMP unbiased test. The following theorem tells us tests that are UMP α -similar on the boundary are often UMP unbiased.

Theorem 3.9. If β_{φ} is continuous in θ for all φ . And φ^* is UMP α -similar test on Λ with size α , then φ^* is a UMP unbiased test.

3.5 Exponential family: Part III

Theorem 3.10. The 1-parameter exponential family

$$f_{\theta}(x) = h(x) \exp\{Q(\theta)T(x) - D(\theta)\}$$

has the MLR in T if Q is non-decreasion.

Remark. Depending on the parametrization, Q may be non-increasing. Take Q' = -Q and T' = -T.

Example 32. $X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda), \ \lambda > 0$. The sufficient statistic is $T(X) = \sum_{i=1}^n X_i$, where $Q(\lambda) = \log(\lambda)$ is increasing.

Corollary 3.11. Let \mathcal{F}_{Θ} be a 1-par exponential family. There exists a UMP test of

$$H_0: \theta \leq \theta_{00} \text{ or } \theta \geq \theta_{01} \text{ vs } H_1: \theta_{00} < \theta < \theta_{01}$$

of the form

$$\varphi(x) = \begin{cases} 1 & t_{00} < T(x) < t_{01} \\ \gamma_j & T(x) = t_{0j} \\ 0 & T(x) < t_{00} \text{ or } T(x) > t_{01} \end{cases}$$

with t_{0j} determined by $\mathbf{E}_{\theta_{00}}(\varphi(X)) = \mathbf{E}_{\theta_{01}}(\varphi(X)) = \alpha$.

Remark. UMP tests for one-parameter exponential families don't exist for

- $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$, or
- $H_0: \theta_{00} \leq \theta \leq \theta_{01}.$

Theorem 3.12. Let \mathcal{F}_{Θ} be a one-parameter exponential family, so that β_{φ} is continuous in θ for all φ . Consider testing

- a) $H_0: \theta_1 \leq \theta \leq \theta_2$ vs $\theta < \theta_1$ or $\theta > \theta_2$
- b) $H_0: \theta = \theta_0 vs H_1: \theta \neq \theta_0.$

Then

$$\varphi_a(x) = \begin{cases} 1 & T(x) < c_1 \text{ or } T(x) > c_2 \\ \gamma_i & T(x) = c_i \\ 0 & o.w. \end{cases}$$

where c_i, γ_i are chosen s.t. $\mathbf{E}_{\theta_1}\varphi_a(X) = \mathbf{E}_{\theta_2}\varphi_a(X) = \alpha$, is a UMP unbiased size α test, and

$$\varphi_b(x) = \begin{cases} 1 & T(x) < d_1 \text{ or } T(x) > d_2 \\ \gamma_i & T(x) = d_i \\ 0 & o.w. \end{cases}$$

where d_i, γ_i are chosen s.t. $\mathbf{E}_{\theta_0}\varphi_b(X) = \alpha$ and $\mathbf{E}_{\theta_0}(T(X)\varphi_b(X)) = \alpha \mathbf{E}_{\theta_0}(T(X))$, is a UMP unbiased size α test.

3.6 Generalized likelihood ratio tests (GLRT)

Definition 3.13. For testing $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$, we could use the likelihood ratio

$$r(x) = \frac{\sup_{\theta \in \Theta_1} f_{\theta}(x)}{\sup_{\theta \in \Theta_0} f_{\theta}(x)}$$

and reject H_0 if r(x) is large.

Definition 3.14. The generalized likelihood ratio is

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} f_{\theta}(x)}{\sup_{\theta \in \Theta} f_{\theta}(x)}$$

and a test that rejects H_0 if $\lambda(x) < c$ is a generalized likelihood ratio test (GLRT).

Remark. We choose c such that $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\lambda(x) > c) = \alpha$.

Proposition 3.15.

- a) $r(x) > k \iff \lambda(x) < c$ for some c = c(k).
- b) If T is sufficient, then λ can be written as the function of T.

Proposition 3.16.

- a) The NP tests are GLRT's.
- b) MLR one-sided tests are GLRT's.

Example 33. $X_i \stackrel{iid}{\sim} N(\mu, 1)$. $H_0: \mu = 0$ vs $H_1: \mu \neq 0$. Then

$$\varphi(x) = \begin{cases} 1 & |\bar{x}| > \sqrt{n}z_{1-c} \\ 0 & \text{o.w.} \end{cases}$$

is UMPU. Now, compute the GLR,

$$\lambda(x) = \exp(-\frac{n}{2}\bar{x}^2) < c$$

 $\iff |\bar{x}| > c'$, so an α -level GLRT is UMPU.

Example 34. $X_i \stackrel{iid}{\sim} f_{\theta,a}, f_{\theta,a} = \frac{1}{\theta} e^{-\frac{(x-a)}{\theta}} \mathbf{1}(x \ge a).$ $H_0: \theta = 1$ vs $H_1: \theta \ne 1.$ Compute the MLEs:

$$\hat{a} = X_{(1)}, \quad \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - X_{(1)})$$

Then the GLR is

$$\lambda(x) = \frac{\exp(-\sum_{i=1}^{n} (x_i - x_{(1)}))}{\frac{1}{\hat{\theta}^n} \sum_{i=1}^{n} (x_i - x_{(1)})} = \hat{\theta}^n \exp(-n(\hat{\theta} + 1));$$

and the GLRT rejects H_0 if and only if $\hat{\theta} < c_1$ or $\hat{\theta} > c_2$. Note that, under H_0 , the distribution of $\hat{\theta}$ is independent of a.

Definition 3.17. A test function φ is said to have asymptotic size α if

$$\limsup_{n} \sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta) \le \alpha.$$

Theorem 3.18 (Wilk). Under the regularity conditions, if $H_0: \theta = \theta_0$, $\hat{\theta}_n$ is the MLE for $\theta \in \Theta \subset \mathbb{R}^k$, and $X_i \stackrel{iid}{\sim} f_{\theta}$. Then

$$-2\log\lambda(x) \xrightarrow{w} \chi_k^2.$$

3.7 Other large sample tests

Definition 3.19. Begin again with

$$H_0: \theta = \theta_0 \quad H_1: \theta \neq \theta_0.$$

• Rao score test

$$R_n = n\psi_n(\theta_0)^T I^{-1}(\theta_0)\psi_n(\theta_0)$$

where $\psi_n(\theta) = \frac{1}{n} \sum_{i=1}^n \psi(x_i; \theta).$

• Wald test

$$W_n = n(\hat{\theta}_n - \theta_0)^T I(\theta_0)(\hat{\theta}_n - \theta_0)$$

where $\hat{\theta}_n$ is the general MLE.

Proposition 3.20. a) $R_n \xrightarrow{w} \chi_k^2$ as $n \to \infty$.

b)
$$W_n \xrightarrow[H_0]{w} \chi_k^2 \text{ as } n \to \infty.$$

c) $W_n = -2 \log \lambda(x) + o_p(1)$

4 Decision Theory and Bayes Methods

4.1 Basic Setting: Bayes methods and decision theory

Definition 4.1. Let $X \sim f_{\theta} = f(\theta|x)$.

- A prior distribution π is a probability distribution of Θ .
- The posterior distribution for θ is

$$\pi(\theta|x) = \frac{f(\theta|x)\pi(\theta)}{f(x)}$$

or $\pi(\theta|x) \propto f(\theta|x)\pi(\theta)$.

• Let \mathcal{F}_{Θ} be a class of pdfs/pmfs. A family Π of prior distributions on Θ is a <u>conjugate family</u> for \mathcal{F}_{Θ} if

$$\pi(\theta|x) \in \Pi$$

for all x and for all $\pi \in \Pi$.

Example 35. $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$. σ^2 known. $\mu \sim N(\mu_0, \tau_0^2)$. Compute the posterior distribution:

$$\begin{aligned} \pi(\theta|x) &\propto f(\theta|x)\pi(\theta) \\ &= \exp\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\} \cdot \exp\{-\frac{1}{2\tau_0^2}(\mu - \mu_0)^2\} \\ &\propto \exp\{-\frac{1}{2\sigma^2}[n\mu^2 - n\bar{x}\mu] - \frac{1}{2\tau_0^2}[\mu^2 - 2\mu\mu_0]\} \\ &= \exp\{-\frac{1}{2}(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2})\mu^2 + (\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\tau_0^2})\mu\} \\ &\propto \exp\{-\frac{1}{2\tau_1^2}(\mu - \mu_1)^2\} \end{aligned}$$

 $\implies \mu | X = x \sim N(\mu_1, \tau_1^2).$

Example 36. $X_i \stackrel{iid}{\sim} \operatorname{Bin}(m, p)$. *m* known. $f(x|p) = \binom{m}{x} \exp\{x \log(\frac{p}{1-p} + n \log(1-p))\}.$

Example 37. $X_i \stackrel{iid}{\sim} N(\theta, \sigma^2)$. σ^2 known. $\pi(\theta) \propto 1$. So

$$\pi(\theta|x) \propto f(\theta|x) \propto \exp\{\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2\}$$
$$\propto \exp\{-\frac{n}{2\sigma^2} (\theta - \bar{x})^2\}$$

 $\implies \ \theta | X = x \sim N(\bar{x}, \sigma^2/n).$

Definition 4.2.

- Model: \mathcal{F}_{Θ} a space of distributions.
- Action Space: \mathcal{A} is the set of valid decisions one can make.

j

- Loss Function: $l: \Theta \times \mathcal{A} \to \mathbb{R}^+$ indicating the loss caused by taking action $a \in \mathcal{A}$ if $\theta \in \Theta$ is the true parameter value.
- Decision Rule: $\delta : \underline{X} \to \mathcal{A}$ a statistic.

Definition 4.3. Let \mathcal{D} be the class of decision rules and l be a specified loss function. The risk function of $\delta \in \mathcal{D}$ is

$$R(\theta, \delta) = \mathbf{E}_{\theta} (l(\theta, \delta(X)))$$

4.2 Bayes rules

Definition 4.4.

• For a given prior π on Θ , the Bayes' risk of $\delta \in \mathcal{D}$ is

$$r(\pi,\delta) = \mathbf{E}_{\pi}\Big(R(\theta,\delta(X))\Big) = \mathbf{E}_{\pi}\Big(\mathbf{E}\big(l(\theta,\delta(X)\mid\theta)\big)\Big).$$

• A Bayes' rule δ^* satisfies

$$r(\pi, \delta^*) = \inf_{\delta \in \mathcal{D}} r(\pi, \delta)$$

for some prior π .

• The posterior risk of decision a given X = x and a prior π is

$$r_{\pi}(a|x) = \mathbf{E}\Big(l(\theta, a)\big|X = x\Big).$$

Example 38. Let $X \sim Bin(n, p)$. Find the min-max rule with the form $\alpha X + \beta$. Assume $p \sim Beta(\alpha, \beta)$, the Bayes rule is

$$\delta = \frac{X + \alpha}{n + \alpha + \beta}.$$

Then compute the risk $R(\delta, p)$:

$$R(\delta, p) = \mathbf{E}\left(\frac{X+\alpha}{n+\alpha+\beta} - p\right)^2 = \frac{1}{(n+\alpha+\beta)^2} \left[\left((\alpha+\beta)^2 - n\right)p^2 + (n-2\alpha(\alpha+\beta))p + \alpha^2 \right].$$

Let the risk be a constant (not rely on p) and solve α and β :

$$\alpha = \beta = \frac{\sqrt{n}}{2}.$$

Finally, we find

$$\delta^* = \frac{X + \frac{\sqrt{n}}{2}}{n + \sqrt{n}}.$$

Remark. Note we use the fact that every Bayes rule with constant risk is a min-max rule.

5 Confidence Estimation

5.1 Confident bounds and confident intervals

Definition 5.1. Begin with a family $\mathcal{F}_{\Theta}, \Theta \subset \mathbb{R}$.

• For $\alpha \in (0,1)$, $\underline{\theta}(X)$ is a lower confident bound (LCB) for θ of level $1 - \alpha$ if

$$\inf_{\alpha} \mathbb{P}_{\theta}(\underline{\theta}(X) \le \theta) \ge 1 - \alpha$$

• For $\alpha \in (0,1)$, $\overline{\theta}(X)$ is a upper confident bound (UCB) for θ of level $1 - \alpha$ if

$$\inf_{\theta} \mathbb{P}_{\theta}(\bar{\theta}(X) \ge \theta) \ge 1 - \alpha.$$

• $(\underline{\theta}(X), \overline{\theta}(X)$ is a level $1 - \alpha$ confident interval (CI) if

$$\inf_{\theta} \mathbb{P}_{\theta}(\underline{\theta}(x) \le \theta \le \overline{\theta}(x)) \ge 1 - \alpha.$$

Remark. Confident bounds and intervals are not unique.

Example 39. $X \sim N(\theta, \sigma^2)$. σ known. (So $\frac{X-\theta}{\sigma} \sim N(0, 1)$.) We show: A LCB is $\underline{\theta}(X) = X - \sigma z_{1-\alpha}$. Since

$$\mathbb{P}_{\theta}(X - \sigma z_{1-\alpha} \le \theta) = \mathbb{P}(\frac{X - \theta}{\sigma} \le z_{1-\alpha}) = 1 - \alpha.$$

Similarly, a UCB is $\bar{\theta}(X) = X + \sigma z_{1-\alpha}$. Since

$$\mathbb{P}_{\theta}(X + \sigma z_{1-\alpha} \ge \theta) = \mathbb{P}(\frac{X - \theta}{-\sigma} \le z_{1-\alpha}) = 1 - \alpha.$$

And a CI is $(X - \sigma z_{1-\frac{\alpha}{2}}, X + \sigma z_{1-\frac{\alpha}{2}}).$

5.2 Confident sets and uniformly most accuracy (UMA)

Definition 5.2.

• Suppose $\underline{\theta}^1, \underline{\theta}^2$ are level $1 - \alpha$ lower confident bounds. We say $\underline{\theta}^1$ is <u>more accurate</u> than $\underline{\theta}^2$ if for any $\theta \in \Theta$ and $\tilde{\theta} < \theta$,

$$\mathbb{P}_{\theta}(\underline{\theta}^{1}(X) \leq \tilde{\theta}) \leq \mathbb{P}_{\theta}(\underline{\theta}^{2}(X) \leq \tilde{\theta}).$$

• Let $\underline{\theta}^*$ be a level $1 - \alpha$ LCB. If for any other level $1 - \alpha$ LCB $\underline{\theta}, \underline{\theta}^*$ is more accurate than $\underline{\theta}$, then $\underline{\theta}^*$ is uniformly most accurate (UMA).

Remark. We try to minimize the false converage rate $\mathbb{P}_{\theta}(\underline{\theta}(X) \leq \tilde{\theta})$. The related notions for UCB are similar.

Definition 5.3.

• A set-valued statistic $S: \underline{X} \to 2^{\Theta}$ is a level $1 - \alpha$ confident set if

$$\inf_{\theta} \mathbb{P}_{\theta}(S(X) \ni \theta) \ge 1 - \alpha.$$

• S^* is said to be <u>uniformly most accurate</u> if $\forall \theta \in \Theta$, $\tilde{\theta} \neq \theta$, and S another level $1 - \alpha$ confident set

$$\mathbb{P}_{\theta}(S^*(X) \ni \tilde{\theta}) \le \mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}).$$

5.3 Duality between confident sets and hypothesis tests

In this subsection, we focus on the relationship between the confident sets and hypothesis tests. Usually, we can construct a level $1 - \alpha$ confident set using a deterministic size α test; and conversely, if we have a level $1 - \alpha$ confident set, we can define a deterministic size α test. The correspondence is described below

1. For each $\theta_0 \in \Theta$, assume there is a size α test for $H_0: \theta = \theta_0$:

$$\varphi(x;\theta_0) = \begin{cases} 1 & x \notin A(\theta_0); \\ 0 & x \in A(\theta_0). \end{cases}$$

Recall that if $\varphi(x; \theta_0) = 1$ means H_0 is rejected; that is $\theta \neq \theta_0$. Thus, if the observed data X is in $A(\theta_0)$, it means θ_0 is closed to the real parameter θ . We define

$$S(X) = \{\theta \in \Theta : X \in A(\theta)\}$$

2. Let S(X) be a level $1 - \alpha$ confident set. For each $\theta_0 \in \Theta$, define a test for $H_0: \theta = \theta_0$ by

$$\varphi(x;\theta_0) = \mathbf{1}(\theta_0 \notin S(x)).$$

More generally, we can construct a confident set using a randomized test. Letting $u \sim U(0, 1)$ independent of X, set $\tilde{\varphi}_{\lambda_0}(x) = \mathbf{1}(\varphi_{\lambda_0}(x) \ge 1 - u)$.

Proposition 5.4. Let φ be a size α randomized test, and $\tilde{\varphi}$ defined above.

- a) $\tilde{\varphi}$ and φ have the same power functions.
- b) $\tilde{\varphi}$ and φ have the same size.

Proof. We only consider the simplest case. Assume $\varphi = \begin{cases} 1 \\ \gamma \\ 0 \end{cases}$. Then we can compute the $\mathbf{E}_{\theta}(\tilde{\varphi})$:

$$\begin{aligned} \mathbf{E}_{\theta}(\tilde{\varphi}) &= \mathbb{P}(\varphi = 1) \mathbb{P}(1 - \gamma > u > 0) + [\mathbb{P}(\varphi = 1) + \mathbb{P}(\varphi = \gamma)] \mathbb{P}(u \le 1 - \gamma) \\ &= \mathbb{P}(\varphi = 1) + \gamma \mathbb{P}(\varphi = \gamma) \\ &= \mathbf{E}_{\theta}(\varphi) \end{aligned}$$

Notice they are always same whenever $\theta \in \Theta_1$ or $\in \Theta_0$.

Theorem 5.5. Let $A: \Theta \to 2^{\underline{X}}$ and $S(X) = \{\theta \in \Theta : X \in A(\theta)\}$. Then S(X) is a level $1 - \alpha$ confident set if and only if $\mathbb{P}_{\theta}(X \notin A(\theta)) \leq \alpha, \forall \theta \in \Theta$.

Example 40. $X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. $H_0: \lambda = \lambda_0; H_1: \lambda \neq \lambda_0$. Its UMPU test is of form

$$\varphi_{\lambda_0}(x) = \begin{cases} 1 & \bar{x} < c_1, \ \bar{x} > c_2 \\ \gamma_i & \bar{x} = c_j \\ 0 & \text{o.w.} \end{cases}$$

where c_i and γ_i are chosen to have size α . Now, we want to find a level $1 - \alpha$ confident set for λ .

Letting $u \sim U(0, 1)$ independent of X_i , set

$$\tilde{\varphi}_{\lambda_0} = \mathbf{1}(\varphi_{\lambda_0}(x) \ge 1 - u);$$

notice that $\tilde{\varphi}$ is a size α deterministic test. Its acceptance region is:

$$A(\lambda_0) = \begin{cases} (c_1, c_2) & \min(\gamma_1, \gamma_2) > 1 - u \\ [c_1, c_2) & \gamma_1 < 1 - u \le \gamma_2 \\ (c_1, c_2] & \gamma_2 < 1 - u \le \gamma_1 \\ [c_1, c_2] & \max(\gamma_1, \gamma_2) < 1 - u \end{cases}$$

Theorem 5.6 (UMP \implies UMA). Let $\underline{\theta}$ be a level $1 - \alpha$ LCB for $\theta \in \mathbb{R}$ for which

$$\varphi(x;\theta_0) = \begin{cases} 1 & \underline{\theta}(x) > \theta_0 \\ 0 & o.w. \end{cases}$$

is a UMP size α test for $H_0: \theta = \theta_0$ vs $H_1: \theta > \theta_0, \forall \theta_0 \in \Theta$. Then $\underline{\theta}$ is UMA.

5.4 Unbiased confident sets

Definition 5.7.

• A confident set S(X) of level $1 - \alpha$ is unbiased if

$$\begin{split} \mathbb{P}_{\theta}(S(X) \ni \theta) &\geq 1 - \alpha \quad \forall \theta \\ \mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}) &\leq 1 - \alpha \quad \tilde{\theta} \neq \theta \end{split}$$

• A level $1 - \alpha$ confident set S(X) is uniformly most accurate unbiased (UMAU) if it is unbiased and for any other unbiased level $1 - \alpha$ confident set S'(X)

$$\mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}) \le \mathbb{P}_{\theta}(S'(X) \ni \tilde{\theta}), \quad \forall \theta \in \Theta, \ \tilde{\theta} \neq \theta.$$

Theorem 5.8 (UMPU \implies UMPA). For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a size α UMPU test of $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Then $S(X) = \{\theta: X \in A(\theta)\}$ is UMAU level $1 - \alpha$.

5.5 Pivots

Definition 5.9. Let $X \sim f_{\theta}$. A RV $T(X, \theta)$ is called a <u>pivot</u> if its distribution is free of θ .

Theorem 5.10. If a set C satisfies $\mathbb{P}(T(X, \theta) \in C) \ge 1 - \alpha$, then

$$S(X) = \{\theta \in \Theta : T(X, \theta) \in C\}$$

is a level $1 - \alpha$ confident set.

Example 41. $X_i \stackrel{iid}{\sim} U(\theta, \theta + 1)$. Note $X_{(n)} - \theta$ is a pivot. Let

$$\mathbb{P}(a \le X_{(n)} - \theta \le b) = 1 - \alpha.$$

Then we get $(X_{(n)} - b, X_{(n)} - a)$.

5.6 Shortest length confident intervals

Example 42. $X_i \stackrel{iid}{\sim} U(\theta, \theta + 1)$. Let L = b - a such that $F(b) - F(a) = 1 - \alpha$. First case $b \ge 1$ and $a \in (0, 1)$. We solve $1 - a^n - 1 - \alpha$ and get $L = 1 - \alpha^{\frac{1}{n}}$.

Second case $b \in (0, 1)$ and a < 0. We find $L = (1 - \alpha)^{1/n}$. Finally, we need to compare $1 - \alpha^{1/n}$ and $(1 - \alpha)^{1/n}$.

5.7 Bayes credible intervals

Definition 5.11. A level $1 - \alpha$ credible interval is a random set $S(X) \subset \Theta$ such that

$$\mathbb{P}(\theta \in S(X) \mid X = x) = 1 - \alpha.$$

Example 43. $X_i \stackrel{iid}{\sim} \operatorname{Bin}(1, p). p \sim \operatorname{Beta}(\alpha, \beta).$

Compute its posterior: $p|X = x \sim \text{Beta}(\alpha + n\bar{X}, \beta + n - n\bar{X})$. Compute l(x) and u(x) such that

$$\mathbb{P}(l(x) \le p \le u(x) \mid X = x) = 1 - \alpha.$$

Then (l(x), u(x)) is a level $1 - \alpha$ credible interval.

5.8 Large sample confident intervals

Example 44. $X_i \stackrel{iid}{\sim} \operatorname{Bin}(1, p).$

• Option 1

Notice that

$$\sqrt{n}(\hat{p}-p) \xrightarrow{w} N(0, p(1-p))$$

where $\hat{p} = \bar{X}$. By Slusky's, $\sqrt{n}(\hat{p} - p) / \sqrt{\hat{p}(1 - \hat{p})} \xrightarrow{w} N(0, 1)$. $\implies \hat{p} \pm \sqrt{\hat{p}(1 - \hat{p}) / n} z_{1 - \alpha}$ is asymptotic level $1 - \alpha$.

• Option 2

Let $g: x \mapsto 2 \arcsin(\sqrt{x})$. Then

$$\sqrt{n}(g(\hat{p}) - g(p)) \xrightarrow{w} N(0, 1).$$

$$\implies g(\hat{p}) \pm \frac{1}{\sqrt{n}} z_{1-\alpha} \text{ is an asymptotic level } 1-\alpha \text{ CI for } g(p).$$
$$\implies S(X) = \{p: |g(p) - g(\hat{p})| \le \frac{1}{\sqrt{n}} z_{1-\alpha}\} \text{ is an asymptotic level } 1-\alpha \text{ CI for } p.$$