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1 Point Estimation

Problem. From the observed data, choose a plausible value for unknown θ, or ψ(θ) for some known ψ.

1.1 Consistency

Definition 1.1. A sequence of estimators Tn based on a sample X1, . . . , Xn is said to be consistent of
ψ(θ) if

Tn
P−→ ψ(θ)

for each θ ∈ Θ.
Tn is called an-consistent if an(Tn − ψ(θ)) = op(1).

Proposition 1.2. If ETn → ψ(θ) and VarTn → ψ(θ), then Tn is consistent for ψ(θ).

1.2 Sufficient statistics and minimal sufficient statistics

Definition 1.3. Let X1, . . . , Xn
iid∼ Fθ, θ ∈ Θ. A statistic T (X1, . . . , Xn) is sufficient for θ if the

distribution of X|T = t does not depend on θ for any t.

Example 1. Let Xi
iid∼ N(θ, 1). Let Un×n be an orthogonal matrix s.t. the first row is u1 = 1√

n
(1, . . . , 1).

If Y = UX, then
Yj ∼ N(

√
nθuTj u1, 1).

So Y1 =
√
nX̄ is sufficient; however, Y2, . . . , Yn

iid∼ N(0, 1) contain no information about θ

Theorem 1.4. Let X1, . . . , Xn
iid∼ fθ, θ ∈ Θ. T (X) is sufficient for θ if and only if there are non-negative

functions h and g s.t.
fθ(x1, . . . , xn) = h(x1, . . . , xn)g(T (X); θ).

Remark.

• Invariance.

:
If
::
T
::

is
:::::::::

sufficient
:::
for

::
θ,

::::
and

::
f

::
is

::::::::::
one-to-one,

:::::
then

:::::
f(T )

::
is

::::
also

:::::::::
sufficient.

Example 2. X1, . . . , Xn
iid∼ U(θ1, θ2), θ2 > θ1, θj ∈ R.

fθ(x1, . . . , xn) =
∏
i

1(θ1 < xi < θ2)

θ2 − θ1

= (θ2 − θ1)−n · 1(θ1 < x(1))1(x(n) < θ2)

=⇒ T (X) = (X(1), X(n)).

Example 3. X1, . . . , Xn
iid∼ U(−θ, θ), θ > 0. (so (X(1), X(n)) is sufficient)

fθ(x1, . . . , xn) =
∏
i

1(−θ < xi < θ)

2θ

= (2θ)−n · 1(max(−x(1), x(1)) < θ)

=⇒ T (X) = max(−X(1), X(1)).

Definition 1.5. T (X) is called minimal sufficient if

a) it is sufficient, and

b) If S(X) is sufficient, ∃w s.t. T (X) = w ◦ S(X)

2



Theorem 1.6. Let A = {(x, y) | ∃k(x, y) 6= 0 s.t. fθ(x) = k(x, y)fθ(y) ∀θ ∈ Θ}, and T is sufficient. T
is minimal sufficient if

(x, y) ∈ A =⇒ T (x) = T (y).

Remark. Usually, we can follow the recipe below to show the minimal sufficiency of T :

1. Show T is sufficient.

2. Check (x, y) ∈ A =⇒ T (x) = T (y);

3. or if {x : fθ(x) ≥ 0} doesn’t depend on θ, check fθ(x)/fθ(y) indep. of θ =⇒ T (x) = T (y)

Example 4. X1, . . . , Xn
iid∼ U(θ,−θ), θ > 0. Notice that fθ(x) = θ−n1(x(n)<θ).

=⇒ T (X) = X(n) is sufficient.
=⇒ Taking (x, y) ∈ A, we have, for some k(x, y) 6= 0,

θ−n1(x(n)<θ) = k(x, y)θ−n1(y(n)<θ).

=⇒ T (x) = T (y). Thus, T is minimal sufficient.

Example 5. X1, . . . , Xn
iid∼ N(µ, 1). Obviously, T =

∑
Xi is sufficient.

If we assume
fθ(x)

fθ(y)
= exp

(1

2
[
∑

y2
i −

∑
x2
i ]
)

exp
(
µ[T (x)− T (y)]

)
is indep. of µ, we must have T (x) = T (y). By Theorem 1.6, T is minimal.

1.3 Complete statistics

Definition 1.7.

• Let F = {fθ | θ ∈ Θ} be a family of pmfs or pdfs. Then F is complete if

Eθg(X) = 0 ∀θ =⇒ Pθ(g(X) = 0) = 1 ∀θ.

• A statistic T is called complete if the induced family of distributions for T is complete, i.e.

Eθg(T (X)) = 0 ∀θ =⇒ Pθ(g(T (X)) = 0) = 1 ∀θ.

Example 6. X1, . . . , Xn
iid∼ Bin(1, p), 0 < p < 1. Consider T (X) =

∑n
i=1Xi. Then

Epg(T ) =

n∑
t=0

P(T = t) · g(t)

=

n∑
t=0

g(t)

(
n
t

)
pt(1− p)n−t

= (1− p)n
n∑
t=0

g(t)

(
n
t

)
(

p

1− p
)t

is a polynonial in p
1−p . Thus,

Epg(T ) = 0 ∀p =⇒ g(t)

(
n
t

)
= 0 ∀t.

It means g(t) = 0 for t ∈ {0, . . . , n}. T is a complete statistic.

Example 7 (not complete). X ∼ Bin(n, p), p ∈ {1/4, 3/4}, is not a complete family.
Construct g s.t. the definition of compelteness is not satisfied.

g(X) = (X − n

4
)(X − 3n

4
)− 3n

16
.
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1.4 Ancillary statistics

Definition 1.8. A statistic A is called ancillary if its distribution doesn’t depend on θ.

Remark. Usually, we have two ways to prove something is ancillary:

1. Compute its distribution directly.

2. Check if Pθ(A(X) ∈ B) is a function of θ.

Example 8. Xi
iid∼ N(µ, σ

2
0). σ2

0 known. We know that S2 ∼ σ2
0

n−1χ
2
n−1. It doesn’t depend on θ.

Moreover, by the Basu’s theorem, X̄ is independent of S2.

Example 9. Let f be a pdf, and for θ ∈ R, set fθ(x) = f(x− θ) (location family).

If Xi
iid∼ fθ, Xi−X̄ are all ancillary for θ. It is because Xi−X̄ is location invariant. Let S be location

invariant; that is
S(x) = S(x+ c),

then we have
Pθ(S(X) ∈ B) = Pθ(S(X − θ) ∈ B).

Notice that X − θ doesn’t depend on θ.

Example 10. Let f be a pdf, and for θ ∈ R, set fθ(x) = 1
θf(xθ ), θ > 0 (location-scale family).

If Xi
iid∼ θ, then X̄

S is ancillary for θ. It is because this statistic is location-scale invariant! So we
don’t need to compute its distribution.

We can summarize the two examples above as follow:

f(X − θ) Location Family X − θ ∼ f Location Invariant
1
θf(Xθ ) Scale Family X

θ ∼ f Scale Invariant
1
σf(X−µσ ) Location-Scale Family X−µ

σ ∼ f Location-Scale Invariant

The following theorem sometimes could be used to prove independence.

Theorem 1.9 (Basu). If S is complete and sufficient, S is independent of any ancillary statistics.

Proof. Let A be ancillary and Y = Eθ(1(A ≤ a)|S). To show that A is independent of S, it suffices to
show

Y = Eθ(1(A ≤ a)).

Clearly, EθY = P(A ≤ a). So Eθ(Y − P(A ≤ a)) = 0 holds for all θ.
By completeness, Y = P(A ≤ a) almost surely; that is A and S are independent.

1.5 Unbaised estimation

Definition 1.10. Let Fθ be a family of distributions, and ϕ be a function of θ.

• A statisticc T is unbiased for θ if
EθT = ϕ(θ), ∀θ ∈ Θ.

• Any function ϕ is called estimable if there always exists an unbiased estimator.

Remark.

• Unbiased estimates may not exist.

•
:
If
::
T
::

is
:::::::::

unbiased
:::
for

::
θ,

:::::
g(T )

::::
may

::::
not

::
be

:::
so

:::
for

:::::
g(θ).

• Usually, we take ϕ = IdΘ.
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1.6 Uniform minimal variance unbaised estimation (UMVUE)

Definition 1.11. Let U be the set of all unbaised estimators of ϕ(θ) that have finite variance. T ∈ U is
called uniformly minimum variance unbiaed estimator (UMVUE) of θ if

VarθT ≤ VarθS, ∀S ∈ U , ∀θ ∈ Θ.

Remark. Invariance.

•
:
If
:::
Ti::

is
:::
the

:::::::::
UMVUE

:::
for

:::
ψi,::::

then
::::::::::

∑n
i=1 λiTi::

is
:::
the

:::::::::
UMVUE

:::
for

::::::::::

∑n
i=1 λiψi.

• Let Tn be a sequence of UMVUEs. If Tn
L2

−−→ T , then T is also a UMVUE.

Theorem 1.12. Let U0 = {v : Eθ(v) = 0 and Varθ(v) < ∞}. Then T ∈ U is the UMVUE of ϕ(θ) if
and only if E(Tv) = 0 for all θ and for all v ∈ U0.

Theorem 1.13 (Rao-Blackwell). Let Fθ be a paremetric family of distributions, and h ∈ U an unbiaed
estimator of ψ(θ). If T is sufficient for θ, then E(h|T ) ∈ U and

Varθ

(
E(h|T )

)
≤ Varθ(h), ∀θ ∈ Θ

with equality if and only if h is a function of T .

Theorem 1.14 (Lehmann-Scheffé). Suppose T is complete and sufficient. If there exists h s.t.

Eθ(h) = ψ(θ) and Varθ(h) <∞,

then Eθ(h|T ) is the UMVUE for ψ.

Remark.

• In Rao-Blackwell, we only require the sufficiency of T ; however, in Lehmann-Scheffé, we require
both of the completeness and sufficiency of T .

• By LS, we can follow this recipe to find the UMVUE:

1. Find a complete sufficient statistic T and a unbiased estimate h.

2. Compute Eθ(h|T ).

Example 11. Xi
iid∼ Poisson(λ). Obviously, X̄ is complete and sufficient for λ ∈ (0,∞).

• Since Xi ∈ U , and T = X̄ is complete and sufficient, by LS,

E(Xi|X̄) = X̄

is the UMVUE for λ. (Recall that Xi|
∑n
j=1Xj ∼ Bin(nX̄, 1

n ).)

• Or we can directly choose h = X̄. Notice that Eλ(X̄) = λ, so X̄ is the UMVUE for λ.

Example 12. Xi
iid∼ Exp(λ). Find the UMVUE of ψ(λ) = Pλ(X1 ≤ 1). A complete sufficient statistic

is T =
∑n
i=1Xi. And let

h(X) = 1(Xj ≤ 1)

be a unbiased estimator for ψ(λ). Therefore, the UMVUE of ψ(λ) is

E(h(X)|T ) = P(Xj ≤ 2|
n∑
i=1

Xi = t)

= P(
Xj∑n
i=1Xi

≤ 2

t
|
n∑
i=1

Xi = t)

= P(
Xj∑n
i=1Xi

≤ 2

t
)

= P(Z ≤ 2

t
)
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where Z ∼ Beta(1, n− 1). Finally, we get the UMVUE of ψ(λ):

E(h(X)|T ) =

{
1 T ≤ 1;

1− (1− 1
T )n−1 T > 1.

Proposition 1.15. If T is complete and sufficient, and Eθ(T
2) is finite for all θ, then T is minimal

sufficient.

Proof. By LS, T is UMVUE for Eθ(T ). Let S be any sufficient statistic, and define

h(S) = Eθ(T |S).

Obviously, it is unbiased for Eθ(T ) and satisfies

Varθ(h(S)) ≤ Varθ(T )

by Rao-Blackwell. However, as T is the UMVUE, by the uniqueness, h(S) = T almost surely; i.e. T is
a function of S. By the definiton, T is minimal sufficient.

1.7 Lower bound for variance in unbiased estimation

Definition 1.16. Let FΘ be a parametric familiy of distributions for a RV X.

• The score function is defined as
∂

∂θ
log fθ(x).

• The Fisher information is defined as the variance of the score function:

I(θ) = Varθ

( ∂
∂θ

log fθ(x)
)
.

Remark. If Xi
iid∼ fθ, let In(θ) denote the FI for

∏
fθ(x).

Proposition 1.17 (Properties of Fisher information). Under regularity conditions, we have:

• I(θ) = Eθ

(
( ∂∂θ log fθ(x))2

)
= −Eθ

(
∂2

∂θ2 log fθ(x)
)

;

• In(θ) = nI1(θ).

Theorem 1.18. If Θ ⊂ R is an open interval and

(i) s = {x : fθ(x) > 0} is indep. of θ

(ii) The score exists and is finite for all x ∈ s, θ ∈ Θ.

(iii) ∃ Eθ(h(x)) for all θ implies:∫
h(X)

∂

∂θ
fθ(x) dx =

∂

∂θ

∫
h(x)fθ(x) dx.

then if T is an unbiased estimator of ϕ(θ), and 0 < I(t) <∞,

Varθ(T ) ≥ [ϕ′(θ)]2

I(θ)
.

Remark.

• The lower bound is attained if and only if T (X) and ∂
∂θ log f(X) are perfectly correlated, that is,

T (X)− ψ(θ) = k(θ)
∂

∂θ
log f(X)

for some function k(θ).
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• If θ ∈ Rk,
Varθ(T (X)) ≥ ψ′(θ)T I(θ)−1ψ(θ).

• Suppose η = η(θ) is strictly monotonic, then

I(η) = Var(
∂

∂η
log fη(X)) = Var(

∂

∂θ
· ∂θ
∂η
· log fθ(X)) = I(θ) · (dθ

dη
)2.

and letting ψ̃(η) = ψ(θ),

[ d
dθψ(θ)]2

I(θ)
=

[ d
dη

dη
dθψ(θ)]2

I(η)/( dθ
dη )2

=
[ d
dη ψ̃(η)]2

I(η)
.

• Note: Scale families with bouded support and U(0, θ) don’t satisfy the conditions.

•
:
If
::
a
::::::::
unbiased

:::::::::
estimator

:::::::
attains

:::
the

::::::
lower

::::::
bound

::
of

::::::::
variance,

:::::
then

::
it

::
is

:::::::::
UMVUE!

Example 13. Xi
iid∼ Exp(λ). Then

fλ(x) =
1

λn
e−T (x)/λ1(X(1) > 0).

• Compute the Fisher information for λ

=⇒ T (X) =
∑n
i=1Xi,

∂
∂λ log fλ(x) = T (X)/λ2 − n = nX̄/λ2 − n.

=⇒ I(λ) = Varλ(T (X)/λ2) = 1
λ4nλ

2 = n
λ2 .

• Lower bound for variance of λ

=⇒ If S(X) is unbiased for λ, VarS(X) ≥ 1
I(λ) = λ2

n = Varλ(X̄).

• Lower bound for variance of ψ(λ) = Pλ(X1 ≤ 1)

For ψ(λ) = Pλ(X1 ≤ 1), ψ′(λ) = −e−1/λ/λ2

=⇒ If S(X) is unbiased for ψ(λ), VarS(X) ≥ [ψ′(λ)]2

I(λ) = e−2/λ/nλ2.

Theorem 1.19. Assume θ 7→ fθ is injective, and T is unbiased for ψ(θ), and Eθ(T (X)) < ∞. Let
θ ∈ Θ and

Sθ =
{
ϕ ∈ Θ : {x : fϕ(x) > 0} ⊂ {x : fθ(x) > 0}

}
\
{
θ
}
.

Then

Varθ(T (X)) ≥ sup
ϕ∈Sθ

[ψ(ϕ)− ψ(θ)]2

Varθ(
fϕ(x)
fθ(x) )

.

Example 14. X ∼ U(0, θ). Then Sθ = (0, θ). And 2X is the UMVUE for θ with the variance

Var(2X) = 4VarX =
θ2

3
.

Notice that
fϕ
fθ

= ( θϕ ) · 1(0, ϕ) for ϕ ∈ Sθ = (0, θ). Then

sup
0<ϕ<θ

[ϕ− θ]2

Varθ[(
θ
ϕ ) · 1(0, ϕ)]

= sup
0<ϕ<θ

(ϕ− θ)2

θ2

ϕ2 · ϕθ · (1−
ϕ
θ )

= sup
0<ϕ<θ

(ϕ− θ)2

θ
ϕ − 1

=
θ2

4

Although 2X is the UMVUE, Var(2X) > θ2

4 .
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1.8 Exponential family: Part I

Definition 1.20. Let {fθ} be a family of PDFs with

fθ(x) = h(x) exp
{ k∑
j=1

Qi(θ)Tj(x) +D(θ)
}
.

Theorem 1.21 (Sufficient and complete statistics). Let Fθ = {fθ : θ ∈ Θ} be a k-parameter exponential
family on Rn, where Θ ⊂ Rk is an interval and k ≤ n. Then

a) T is sufficient.

b) If the range of (Q1, . . . , Qk) contains an open set in Rk, T is complete.

The theorem above gives a simple way to find sufficient statistics (see the example below); however,
T may not be complete in general.

Example 15. Xi
iid∼ N(µ, σ2), µ ∈ R, σ2 > 0.

We re-write its pdf as the form of exponential family:

fµ,σ2(x) = (2π)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
log(σ2)

}
= (2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi −
nµ2

2σ2
− n

2
log(σ2)

}
Thus, T1(X) =

∑n
i=1Xi, T2(X) =

∑n
i=1X

2
i , and (T1, T2) is sufficient.

Moreover, we are interested in its completeness. Notice that Qi(µ, σ
2) = µ

σ2 and Q2(µ, σ2) = − 1
2σ2 .

The range of Q = (Q1, Q2) is R× R−, and it contains an open set in R2. So T is complete.

Example 16. Xi
iid∼ N(θ, θ2), θ > 0.

Obviously, (T1, T2) is still sufficient for θ, since

fθ(x) = (2π)−n/2 exp
{1

θ
T1(x)− 1

2θ2
T2(x) +D(θ)

}
.

However, T is not complete.
Notice that T1 ∼ N(nθ, nθ2) =⇒ EθT

2
1 (X) = n(n+ 1)θ2. Similarly, EθT2(X) = 2nθ2. So

Eθ

(
2T 2

1 (X)− (n+ 1)T2(X)
)

= 0,∀θ.

Thus, we can construct g : (t1, t2) 7→ 2t21 − (n+ 1)t2 that is not identically 0 on R× R+.

1.9 Methods of moment

Definition 1.22. The method of moments estimator of θ = h(m1, . . . ,mk) is

Th = h(m̂1, . . . , m̂k)

where m̂k = 1
n

∑n
i=1X

k
i .

Remark. Note: mn := EXn. And mn1,...,nk := EXn1
1 . . . Xnk

k .

Example 17. Xi
iid∼ Bin(m, p). h(p) = Pp(X1 = 2) =

(
m
2

)
(mp)2

m2 (1− mp
m )m−2.

The method of moments estimator is

Th(X) =

(
m
2

)
(X̄2)2

m2
(1− X̄

m
)m−2.

Example 18. Xi
iid∼ N(µ, σ2). h(µ, σ2) =

(
µ
σ2

)
=

(
µ

E(X2)− µ2

)
.

The method of moments estimator is

Th(X) =

(
X̄

1
n

∑
X2
i − X̄2

)
=

(
X̄

n−1
n S2

)
.
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2 Maximum likelihood

2.1 Maximum likelihood estimators (MLE)

Definition 2.1. Let FΘ be a family of pmfs/pdfs.

• The likelihood function is
L(θ;x) = fθ(x), θ ∈ Θ.

• The log-likelihood is
l(θ;x) = logL(θ;x).

Remark. If Xi
iid∼ fθ, then L(θ;X) =

∏n
i=1 fθ(Xi) and l(θ;X) =

∑n
i=1 log fθ(Xi).

Definition 2.2. If Xi
iid∼ fθ and X = x is observed.

θ̂(x) = arg maxθ∈ΘL(θ;x),

if it exists, is called a maximum likelihood estimate of θ.

Remark. By the strict monotonity of log, we have

θ̂(x) = arg maxθ∈Θl(θ;x) = arg maxθ∈Θ

n∑
i=1

fθ(xi).

Example 19. Xi
iid∼ Poisson(θ), Θ = (0,∞).

Compute its likelihood function:

L(θ;x) = e−nθ · e
(log θ)·

∑
xi∏

xi!

l(θ;x) = (
∑

xi) log θ − nθ −
∑

log(xi!)

Compute its partial derivatives:

∂

∂θ
=

∑
xi
θ
− n = 0 =⇒ θ = x̄

∂2

∂θ2
= −

∑
xi
θ2
≤ 0

Thus, θ̂(x) = x̄ is the MLE except when x̄ = 0; because when x̄ = 0, θ = 0 /∈ Θ.

Example 20. Xi
iid∼ U(θ1, θ2).

Compute its likelihood function:

L(θ;x) =
∏

fi(xi) =
∏( 1

θ2 − θ1
1(θ1 ≤ xi ≤ θ2)

)
=

{
0 θ1 ≥ x(1) or θ2 < x(n)

1
(θ2−θ1)n o.w.

Notice: when θ1 ≤ x(1) and θ2 ≥ x(n),

(θ2 − θ1) ↓ =⇒ L(θ;x) ↑ .

Therefore, (θ̂1, θ̂2) = (x(1), x(n)) is the MLE.

Proposition 2.3. Let T be sufficient for θ for a family of pdfs/pmfs. If an MLE exists, there is an

MLE such that θ̂ = g(T ).
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Proof. Compute its likelihood function:

L(θ;x) = fθ(x)

(By Thm 1.4.) = h(x)gθ(T (x))

Assume θ∗ maximizes L(θ;x). It also maximizes wx(θ) = gθ(T (x)).
Define S(x) = {θ∗ ∈ Θ : gθ∗(T (x)) = maxθ gθ(T (x))}. (Note: the maxima may not be unique.)

Notice that T (x) = T (y) =⇒ S(x) = S(y), so we can choose θ̂(x) ∈ S(x) such that it is a function
of T (x).

2.2 Uniqueness and existence of MLEs

The following example shows: (1) MLE may not be unique. (2) MLE could be a function of T ; however,
some MLEs may not be a function of T .

Example 21. Xi
iid∼ U(θ − 1, θ + 1).

Compute its likelihood function:

L(θ;x) =
1

2n
· 1(x(1) ≥ θ − 1) · 1(x(n) ≤ θ + 1)

=
1

2n
· 1(x(n) − 1 ≤ θ ≤ x(1) + 1)

=⇒ any estimator θ̂(x) ∈ [x(n) − 1, x(1) + 1] is an MLE. (not unique)
In particular,

θ̂(x) = α(x(n) − 1) + (1− α)(x(1) + 1)

for 0 ≤ α ≤ 1 is an MLE that is a function of T = (x(1), x(n)); however, so is

sin2(x̄)(x(n) − 1) + cos2(x̄)(x(1) + 1),

not a function of T .

Theorem 2.4.

• Existence

Suppose l : Θ→ R, Θ open in Rk, is continuous. If l(θ;x)→ −∞ as θ → ∂Θ, then

{θ ∈ Θ : l(θ) = max
θ∈Θ

l(θ)} 6= ∅.

• Existence and uniqueness

Suppose X ∼ fθ, θ ∈ Θ ⊂ Rk open set. If l(θ;x) is strictly convave, is continuous, and moreover,
l(θ;x) −→ −∞ as θ → ∂Θ, then the MLE exists and is unique.

2.3 Exponential family: Part II

Lemma 2.5. Let Fη be a k-parameter exponential family in canonical parameter. The following state-
ments are equivalent:

a) The log-likelihood function l(η;x) is strictly convave

b) A(η) is strictly convex

c) A′′(η) = Var(T ) > 0 (aka full rank).

Theorem 2.6. Suppose FΘ is a k-parameter exponential family with

fη = h(x) exp
{ k∑
j=1

ηjTj(x)−A(η)
}

such that Θ is open and A′′(η) > 0. Let x be the deserved value and t0 = T (x) ∈ Rk.

10



a) If Pη(cTT (x) > cT t0) > 0 for all c 6= 0, η ∈ Θ, then η̂ exists, is unique, and satisfies

A′
(
η̂(x)

)
= Eη̂(x)(T (x)) = t0.

b) If ∃c 6= 0 such that P(cTT (x) > cT t0) = 0, there is no MLE.

Corollary 2.7. Let CT be the convex hull of the support of T . Then the MLE exists and is unique if
and only if t0 ∈ C◦T .

Corollary 2.8. If T has a continuous distribution, the MLE exists and is unique.

Corollary 2.9. Let the exponential family be

fθ(x) = h(x) exp
{ k∑
j=1

Qj(θ)Tj(x)−B(θ)
}
.

If EθTj = Tj have a solution θ̂(X) ∈ Q(Θ)◦, it is the unique MLE.

Example 22. X ∼ Bin(n, θ). Then θ̂ = X
n is the MLE unless X = 0.

Example 23. Xi
iid∼ Gamma(α, β). The MLE exists and is unique.

2.4 Invariance

Theorem 2.10. Let Fθ be a family of pdfs/pmfs, θ ∈ Rk. If θ̂ is an MLE and h : Rk → Rp with p ≤ k,

then h(θ̂) is an MLE for h(θ).

Example 24. Xi
iid∼ N(µ, σ2), µ ∈ R and σ > 0. Obviously, µ̂ = X̄ and σ̂2 = 1

n

∑n
i=1(Xi − X̄)2 are

MLEs for µ and σ2. We may be interested in the MLE of µ/σ.
Let h : (x, y) 7→ x

y , then h(µ̂, σ̂) is the MLE for h(µ, σ). Thus, the MLE for µ/σ is X̄/σ̂.

2.5 Asymptotic consistency and normality

Theorem 2.11 (Wald). Recall that D(θ0, θ) = Eθ0(log fθ(x)). Suppose

sup
θ∈Θ

( 1

n

n∑
i=1

log fθ(x)−D(θ0, θ)
)

P−→
θ0

0,

and for all ε > 0,
sup

θ:|θ−θ0|≥ε
D(θ0, θ) < D(θ0, θ0).

Then we have
θ̂

P−→
θ0

θ0.

Remark. Generally, consistency of θ̂ can be found in other ways (e.g. continuous mapping theorem,
WLLN).

The following theorem gives a sufficient conditions for a sequence of MLEs θ̂n based on a sample

X1, . . . , Xn
iid∼ fθ to be asymptotically normal. Let θ0 ∈ Θ be the true parameter.

Theorem 2.12. If the following conditions hold

(A1) The score function ψ is well-defined and 0 < I(θ) <∞;

(A2) ∂2

∂θ2ψ(x; θ) is continuous;

(A3) For some ε, g such that Eθ0g(X) <∞,

sup
|θ−θ0|≤ε

| ∂
2

∂θ2
ψ(x; θ)| < g(x);

11



and θ̂n exists, is unique, and is consistent under H0, then

θ̂ = θ0 +
1

nI(θ0)

n∑
i=1

ψ(Xi; θ) + op(n
−1/2),

and

√
n(θ̂ − θ0)

D−→
θ0

N(0, I−1(θ0)).

Remark. For suitable h, we can also show AN of h(θ̂) using the delta-method.

Example 25. Xi
iid∼ Gamma(α, 1). The MLE α̂ is the solution to

nΓ′(α)

Γ(α)
=

n∑
i=1

log(Xi).

It can only be computed numerically. If we want to do inference for α, since

I(α) = −Eα(
∂2

∂α2
log fα(x)) =

Γ′′(α)Γ(α)− Γ′(α)2

Γ(α)2
,

√
nI(α)(α̂− α)

D−→
α
N(0, 1).

Example 26. Xi
iid∼ U(0, θ). The conditons for AN do not hold. Its MLE is θ̂ = X(n). So

n(θ − θ̂) D−→ Exp(θ).
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3 Hypothesis Testing

3.1 Introduction to hypothesis testing

Definition 3.1. Let ϕ be a test, and βϕ(θ) = Eθ(ϕ(X)).

• The size of a test ϕ is defined as

sup
θ∈Θ0

βϕ(θ) = sup
θ∈Θ0

Eθ(ϕ(X)).

• Let ϕ be a test of size α. For any θ ∈ Θ1, the power of ϕ for detecting θ is

βϕ(θ) = Eθ(ϕ(X)) = Pθ(H0 rejected).

Remark. As a function of θ, βϕ is called the power function. If ϕ(X) = 1(T (X) ∈ C), T is called a test
statistic, and C is called the critical region.

The size is also called the Type I error; it represents the probability that H0 is correct, but we reject
it. The power is also called the Type II error; it represents the probability that H0 is wrong, but we
accept it.

Example 27. Xi
iid∼ N(µ, σs), µ ∈ µ0, µ1 (µ0 < µ1), and σ2 > 0 known. H0 : µ = µ0 vs H1 : µ = µ1.

Conider a rule ϕ(X̄) = 1(X̄ > k), for some k, corresponding to the critical region ck = {X : X̄ > k}.
Fix its size:

βϕ(µ0) = Pµ0
(X̄ > k) = 1− Φ(

√
n(k − µ0)

σ
) = α.;

so we take k s.t.
√
n(k−µ0)
σ = Φ−1(1− α) = z1−α; i.e.

k = µ0 +
σ√
n
z1−α,

leading the test

ϕ(X̄) =

{
1 X̄ > µ0 + σ√

n
z1−α

0 o.w.
.

The power function is given by

βϕ(µ1) = Pµ1(X̄ > µ0 +
σ√
n
z1−α) = 1− Φ(

√
n(µ0 − µ1)

σ
+ z1−α).

Definition 3.2. Let Φα be all test functions of size ≤ α. Then ϕ∗ ∈ Φα is said to be most powerful
against θ ∈ Θ1, if

βϕ∗(θ) ≥ βϕ(θ) ∀ϕ ∈ Φα.

And ϕ∗ is said to be uniformly most powerful if

βϕ∗(θ) ≥ βϕ(θ) ∀ϕ ∈ Φα, θ ∈ Θ1.

3.2 Neyman-Pearson theory

Theorem 3.3 (Neyman-Pearson). Let H0 : θ = θ0 and H1 : θ = θ1, be simple hypothese. Then

a) any test of the form

ϕ(x) =


1 f1(x) > kf0(x)

γ(x) f1(x) = kf0(x)

0 f1(x) < kf0(x)

(1)

for k ≥ 0 and 0 ≤ γ(x) ≤ 1 is most powerful for its size.
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b) Given α ∈ (0, 1), there exists a test of the form above with γ(x) = γ a constant s.t. ϕ has size α.

Proof. This proof is important. Because it gives us a method to construct the most powerful test under
the simple hypothese.

For part (a), let ϕ∗ be a test which size is less than ϕ; that is,

Eθ0ϕ
∗(X) ≤ Eθ0ϕ(X).

We hope prove Eθ1ϕ
∗(X) ≤ Eθ1ϕ(X). Notice that

Eθ1ϕ(X)−Eθ1ϕ
∗(X) ≤ Eθ1ϕ(X)−Eθ1ϕ

∗(X)− k
[
Eθ0ϕ(X)−Eθ0ϕ

∗(X)
]

=

∫
D(x)[f1(x)− kf0(x)] dx

where D := ϕ− ϕ∗. Let A0 = {f1 < kf0} and A1 = {f1 > kf0}. In continuous case,∫
D(x)[f1(x)− kf0(x)] dx =

∫
A0

D(x)[f1(x)− kf0(x)] dx+

∫
A1

D(x)[f1(x)− kf0(x)] dx

≥ 0

by noticing that D ≤ 0 on A0 and D ≥ 0 on A1.
Part (b). Let α ∈ (0, 1]. We want to find a test of the form (1) with size α where γ(x) is a constant

γ. Thus, we have the following equation:

Eθ0ϕ(X) = α;

that is,

Pθ0
(
f1(X) > kf0(X)

)
+ γPθ0

(
f1(X) = kf0(X)

)
= α

Pθ0
(
f1(X) ≤ kf0(X)

)
− γPθ0

(
f1(X) = kf0(X)

)
= 1− α.

Let λ = f1
f0

. G0 be the CDF of λ under θ0. So we have

G0(k)− γPθ0
(
λ(X) = k

)
= 1− α. (2)

Define k = G−1
0 (1− α) = inf{k̃ : G0(k̃) > 1− α}.

• Case (i). If G0 is continuous at k, let γ = 0.

• Case (ii). If G0 is not continuous at k, let γ = G0(k)−(1−α)
Pθ0 (λ(X)=k) .

Proposition 3.4. If T is sufficient for X, the NP test is a function of T .

Example 28. X ∼ Poisson(λ), H0 : λ = λ0 = 1 vs H1 : λ = λ1 = 2.

• Compute the CDF of f1
f0

:

Since f1(x)
f0(x) =

e−λ1
λx1
x!

e−λ0
λx0
x!

= eλ0−λ1(λ1

λ0
)x = 2x

e ,

Pλ0
(
f1(X)

f0(X)
≤ k) = Pλ0

(
2X

e
≤ k) = Pλ0

(X ≤ ln k + 1

ln 2
).
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• Compute k and γ:

The formula (2) becomes:

Pλ0
(X ≤ ln k + 1

ln 2
)− γPλ0

(
2X

e
= k) = 1− α.

If α = 0.05, F−1
λ0

(1− α) = 3, so we set k = 8
e ,

γ =
0.981− 0.95

0.061
= 0.5

and thus the NP test is

ϕ(x) =


1 x > 3

0.5 x = 3

0 x < 3

.

The test statistic is X itself, while the p-value is Pλ(X > x0), where x0 is the observed value (since
λ1 > λ0).

3.3 Monotone likelihood ratio (MLR) property

Definition 3.5. Let FΘ be a family of pdfs/pmfs, where Θ ⊂ R is an interval. We say FΘ has the

monotone likelihood ratio (MLR) property in T (X) if, for θ1, θ2 ∈ Θ, θ1 < θ2,
fθ2 (x)

fθ1 (x) is an non-decreasing

function of T (X) on {x : fθ1(x) 6= 0 or fθ2(x) 6= 0}.

Example 29. Xi
iid∼ U(0, θ), θ > 0. Let θ1 < θ2, so for x ∈ Rn such that x(n) < θ2,

fθ2(x)

fθ1(x)
=

( 1
θ2

)n1(x(n)<θ2)

( 1
θ1

)n1(x(n) < θ1)

=
θn1
θn2
· 1

1(x(n) < θ1)

=

{
θn1
θn2

θ(1) > x(n)

∞ θ(1) ≤ x(n) < θ2

=⇒ it has the MLR in T (X) = X(n).

Example 30. Xi
iid∼ N(0, σ2), σ2 > 0. Let σ2

1 < σ2
2 .

fσ2(x)

fσ1
(x)

=
σn1
σn2

+
1

2
(

1

σ2
1

− 1

σ2
2

)

n∑
i=1

x2
i ;

so it has the MLR property in T (X) =
∑n
i=1X

2
i .

Theorem 3.6.

• If X ∼ fθ, where {fθ : θ ∈ Θ} has the MLR property in T (X), then for H0 : θ ≤ θ0 vs H1 : θ > θ0,
any test of the form

ϕ(x) =


1 T (x) > t0

γ T (x) = t0

0 T (x) < t0

has βϕ(θ) non-decreasing and is UMP for size α = Eθ0(ϕ(X)) if this is non-zero.
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• Also, for any α ∈ (0, 1), ∃t0 ∈ R and γ ∈ (0, 1) s.t. the above test is UMP of size α.

Example 31. Xi
iid∼ Gamma(α, 1), α > 0. Find a UMP test for H0 : α ≥ α0 vs H1 : α < α0. Note that

f(x) =
1

[Γ(α)]n
∏n
i=1 xi

exp
{
α
∑
i=1

n log xi −
n∑
i=1

xi
}

has the MLR property in T (x) =
∑n
i=1 log(xi). Therefore, applying the theorem, any test of the form

ϕ(x) =

{
1 T (x) < t0

0 T (x) ≥ t0

is UMP for its size α∗ = Eα0(ϕ(X)).
For a fixed α∗ ∈ (0, 1), let F0 be the CDF of T (X) under α0, and choose t0 = F−1(α∗), so that

Eα0
(ϕ(X)) = Pα0

(T (X) < t0) = α∗.

3.4 Unbiased tests

Definition 3.7.

• A test ϕ of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is said to be unbiased at size α if

βϕ(θ) ≤ α ∀θ ∈ Θ0

βϕ(θ) ≥ α ∀θ ∈ Θ1

• Let Uα be the class of all unbiased size α tests.

• If ∃ϕ ∈ Uα s.t. βϕ(θ) ≥ βϕ′(θ) ∀ϕ′ ∈ Uα, ∀θ ∈ Θ1, then ϕ is called a UMP unbiased test.

Definition 3.8.

• A test ϕ is said to be α-similar on Θ∗ ⊂ Θ if

βϕ(θ) = α ∀θ ∈ Θ∗.

• Let Λ = Θ̄0 ∩ Θ̄1.

• A test which is UMP over all tests that are α-similar on Λ is said to be a UMP α-similar test.

Remark. If βϕ(θ) is continuous in θ for all ϕ, then any unbiased size α test ϕ is α-similar on Λ.

It is easier to find a UMP α-similar test than to find a UMP unbiased test. The following theorem
tells us tests that are UMP α-similar on the boundary are often UMP unbiased.

Theorem 3.9. If βϕ is continuous in θ for all ϕ. And ϕ∗ is UMP α-similar test on Λ with size α, then
ϕ∗ is a UMP unbiased test.

3.5 Exponential family: Part III

Theorem 3.10. The 1-parameter exponential family

fθ(x) = h(x) exp{Q(θ)T (x)−D(θ)}

has the MLR in T if Q is non-decreasion.

Remark. Depending on the parametrization, Q may be non-increasing. Take Q′ = −Q and T ′ = −T .

Example 32. Xi
iid∼ Poisson(λ), λ > 0. The sufficient statistic is T (X) =

∑n
i=1Xi, where Q(λ) = log(λ)

is increasing.
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Corollary 3.11. Let FΘ be a 1-par exponential family. There exists a UMP test of

H0 : θ ≤ θ00 or θ ≥ θ01 vs H1 : θ00 < θ < θ01

of the form

ϕ(x) =


1 t00 < T (x) < t01

γj T (x) = t0j

0 T (x) < t00 or T (x) > t01

with t0j determined by Eθ00(ϕ(X)) = Eθ01(ϕ(X)) = α.

Remark. UMP tests for one-parameter exponential families don’t exist for

• H0 : θ = θ0 vs H1 : θ 6= θ0, or

• H0 : θ00 ≤ θ ≤ θ01.

Theorem 3.12. Let FΘ be a one-parameter exponential family, so that βϕ is continuous in θ for all ϕ.
Consider testing

a) H0 : θ1 ≤ θ ≤ θ2 vs θ < θ1 or θ > θ2

b) H0 : θ = θ0 vs H1 : θ 6= θ0.

Then

ϕa(x) =


1 T (x) < c1 or T (x) > c2

γi T (x) = ci

0 o.w.

where ci, γi are chosen s.t. Eθ1ϕa(X) = Eθ2ϕa(X) = α, is a UMP unbiased size α test, and

ϕb(x) =


1 T (x) < d1 or T (x) > d2

γi T (x) = di

0 o.w.

where di, γi are chosen s.t. Eθ0ϕb(X) = α and Eθ0(T (X)ϕb(X)) = αEθ0(T (X)), is a UMP unbiased
size α test.

3.6 Generalized likelihood ratio tests (GLRT)

Definition 3.13. For testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1, we could use the likelihood ratio

r(x) =
supθ∈Θ1

fθ(x)

supθ∈Θ0
fθ(x)

and reject H0 if r(x) is large.

Definition 3.14. The generalized likelihood ratio is

λ(x) =
supθ∈Θ0

fθ(x)

supθ∈Θ fθ(x)

and a test that rejects H0 if λ(x) < c is a generalized likelihood ratio test (GLRT).

Remark. We choose c such that supθ∈Θ0
Pθ(λ(x) > c) = α.

Proposition 3.15.

a) r(x) > k ⇐⇒ λ(x) < c for some c = c(k).

b) If T is sufficient, then λ can be writen as the function of T .
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Proposition 3.16.

a) The NP tests are GLRT’s.

b) MLR one-sided tests are GLRT’s.

Example 33. Xi
iid∼ N(µ, 1). H0 : µ = 0 vs H1 : µ 6= 0. Then

ϕ(x) =

{
1 |x̄| >

√
nz1−α

0 o.w.

is UMPU. Now, compute the GLR,

λ(x) = exp(−n
2
x̄2) < c

⇐⇒ |x̄| > c′, so an α-level GLRT is UMPU.

Example 34. Xi
iid∼ fθ,a, fθ,a = 1

θ e
− (x−a)

θ 1(x ≥ a). H0 : θ = 1 vs H1 : θ 6= 1.
Compute the MLEs:

â = X(1), θ̂ =
1

n

n∑
i=1

(Xi −X(1)).

Then the GLR is

λ(x) =
exp(−

∑n
i=1(xi − x(1)))

1
θ̂n

∑n
i=1(xi − x(1))

= θ̂n exp(−n(θ̂ + 1));

and the GLRT rejects H0 if and only if θ̂ < c1 or θ̂ > c2. Note that, under H0, the distribution of θ̂ is
independent of a.

Definition 3.17. A test function ϕ is said to have asymptotic size α if

lim sup
n

sup
θ∈Θ0

βϕ(θ) ≤ α.

Theorem 3.18 (Wilk). Under the regularity conditions, if H0 : θ = θ0, θ̂n is the MLE for θ ∈ Θ ⊂ Rk,

and Xi
iid∼ fθ. Then

−2 log λ(x)
w−→ χ2

k.

3.7 Other large sample tests

Definition 3.19. Begin again with

H0 : θ = θ0 H1 : θ 6= θ0.

• Rao score test
Rn = nψn(θ0)T I−1(θ0)ψn(θ0)

where ψn(θ) = 1
n

∑n
i=1 ψ(xi; θ).

• Wald test
Wn = n(θ̂n − θ0)T I(θ0)(θ̂n − θ0)

where θ̂n is the general MLE.

Proposition 3.20. a) Rn
w−→ χ2

k as n→∞.

b) Wn
w−−→
H0

χ2
k as n→∞.

c) Wn = −2 log λ(x) + op(1).
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4 Decision Theory and Bayes Methods

4.1 Basic Setting: Bayes methods and decision theory

Definition 4.1. Let X ∼ fθ = f(θ|x).

• A prior distribution π is a probability distribution of Θ.

• The posterior distribution for θ is

π(θ|x) =
f(θ|x)π(θ)

f(x)

or π(θ|x) ∝ f(θ|x)π(θ).

• Let FΘ be a class of pdfs/pmfs. A family Π of prior distributions on Θ is a conjugate family for
FΘ if

π(θ|x) ∈ Π

for all x and for all π ∈ Π.

Example 35. Xi
iid∼ N(µ, σ2). σ2 known. µ ∼ N(µ0, τ

2
0 ).

Compute the posterior distribution:

π(θ|x) ∝ f(θ|x)π(θ)

= exp{− 1

2σ2

n∑
i=1

(xi − µ)2} · exp{− 1

2τ2
0

(µ− µ0)2}

∝ exp{− 1

2σ2
[nµ2 − nx̄µ]− 1

2τ2
0

[µ2 − 2µµ0]}

= exp{−1

2
(
n

σ2
+

1

τ2
0

)µ2 + (
nx̄

σ2
+
µ0

τ2
0

)µ}

∝ exp{− 1

2τ2
1

(µ− µ1)2}

=⇒ µ|X = x ∼ N(µ1, τ
2
1 ).

Example 36. Xi
iid∼ Bin(m, p). m known.

f(x|p) =

(
m
x

)
exp{x log( p

1−p + n log(1− p))}.

Example 37. Xi
iid∼ N(θ, σ2). σ2 known. π(θ) ∝ 1. So

π(θ|x) ∝ f(θ|x) ∝ exp{ 1

2σ2

n∑
i=1

(xi − θ)2}

∝ exp{− n

2σ2
(θ − x̄)2}

=⇒ θ|X = x ∼ N(x̄, σ2/n).

Definition 4.2.

• Model: FΘ a space of distributions.

• Action Space: A is the set of valid decisions one can make.

• Loss Function: l : Θ × A → R+ indicating the loss caused by taking action a ∈ A if θ ∈ Θ is the
true parameter value.

• Decision Rule: δ : X → A a statistic.

Definition 4.3. Let D be the class of decision rules and l be a specified loss function. The risk function
of δ ∈ D is

R(θ, δ) = Eθ

(
l(θ, δ(X))

)
.
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4.2 Bayes rules

Definition 4.4.

• For a given prior π on Θ, the Bayes’ risk of δ ∈ D is

r(π, δ) = Eπ

(
R(θ, δ(X))

)
= Eπ

(
E
(
l(θ, δ(X) | θ)

))
.

• A Bayes’ rule δ∗ satisfies
r(π, δ∗) = inf

δ∈D
r(π, δ)

for some prior π.

• The posterior risk of decision a given X = x and a prior π is

rπ(a|x) = E
(
l(θ, a)

∣∣X = x
)
.

Example 38. Let X ∼ Bin(n, p). Find the min-max rule with the form αX+β. Assume p ∼ Beta(α, β),
the Bayes rule is

δ =
X + α

n+ α+ β
.

Then compute the risk R(δ, p):

R(δ, p) = E(
X + α

n+ α+ β
− p)2 =

1

(n+ α+ β)2

[
((α+ β)2 − n)p2 + (n− 2α(α+ β))p+ α2

]
.

Let the risk be a constant (not rely on p) and solve α and β:

α = β =

√
n

2
.

Finally, we find

δ∗ =
X +

√
n

2

n+
√
n
.

Remark. Note we use the fact that
:::::
every

::::::
Bayes

::::
rule

::::
with

::::::::
constant

::::
risk

::
is

::
a

::::::::
min-max

::::
rule.
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5 Confidence Estimation

5.1 Confident bounds and confident intervals

Definition 5.1. Begin with a family FΘ, Θ ⊂ R.

• For α ∈ (0, 1), θ(X) is a lower confident bound (LCB) for θ of level 1− α if

inf
θ
Pθ(θ(X) ≤ θ) ≥ 1− α.

• For α ∈ (0, 1), θ̄(X) is a upper confident bound (UCB) for θ of level 1− α if

inf
θ
Pθ(θ̄(X) ≥ θ) ≥ 1− α.

• (θ(X), θ̄(X) is a level 1− α confident interval (CI) if

inf
θ
Pθ(θ(x) ≤ θ ≤ θ̄(x)) ≥ 1− α.

Remark. Confident bounds and intervals are not unique.

Example 39. X ∼ N(θ, σ2). σ known. (So X−θ
σ ∼ N(0, 1).)

We show: A LCB is θ(X) = X − σz1−α. Since

Pθ(X − σz1−α ≤ θ) = P(
X − θ
σ

≤ z1−α) = 1− α.

Similarly, a UCB is θ̄(X) = X + σz1−α. Since

Pθ(X + σz1−α ≥ θ) = P(
X − θ
−σ

≤ z1−α) = 1− α.

And a CI is (X − σz1−α2 , X + σz1−α2 ).

5.2 Confident sets and uniformly most accuracy (UMA)

Definition 5.2.

• Suppose θ1, θ2 are level 1 − α lower confident bounds. We say θ1 is more accurate than θ2 if for

any θ ∈ Θ and θ̃ < θ,
Pθ(θ1(X) ≤ θ̃) ≤ Pθ(θ2(X) ≤ θ̃).

• Let θ∗ be a level 1− α LCB. If for any other level 1− α LCB θ, θ∗ is more accurate than θ, then
θ∗ is uniformly most accurate (UMA).

Remark. We try to minimize the false converage rate Pθ(θ(X) ≤ θ̃). The related notions for UCB are
similar.

Definition 5.3.

• A set-valued statistic S : X → 2Θ is a level 1− α confident set if

inf
θ
Pθ(S(X) 3 θ) ≥ 1− α.

• S∗ is said to be uniformly most accurate if ∀θ ∈ Θ, θ̃ 6= θ, and S another level 1− α confident set

Pθ(S∗(X) 3 θ̃) ≤ Pθ(S(X) 3 θ̃).
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5.3 Duality between confident sets and hypothesis tests

In this subsection, we focus on the relationship between the confident sets and hypothesis tests. Usually,
we can construct a level 1− α confident set using a deterministic size α test; and conversely, if we have
a level 1 − α confident set, we can define a deterministic size α test. The correspondence is described
below

1. For each θ0 ∈ Θ, assume there is a size α test for H0 : θ = θ0:

ϕ(x; θ0) =

{
1 x /∈ A(θ0);

0 x ∈ A(θ0).

Recall that if ϕ(x; θ0) = 1 means H0 is rejected; that is θ 6= θ0. Thus, if the observed data X is in
A(θ0), it means θ0 is closed to the real parameter θ. We define

S(X) = {θ ∈ Θ : X ∈ A(θ)}.

2. Let S(X) be a level 1− α confident set. For each θ0 ∈ Θ, define a test for H0 : θ = θ0 by

ϕ(x; θ0) = 1(θ0 /∈ S(x)).

More generally, we can construct a confident set using a randomized test. Letting u ∼ U(0, 1) independent
of X, set ϕ̃λ0(x) = 1(ϕλ0(x) ≥ 1− u).

Proposition 5.4. Let ϕ be a size α randomized test, and ϕ̃ defined above.

a) ϕ̃ and ϕ have the same power functions.

b) ϕ̃ and ϕ have the same size.

Proof. We only consider the simplest case. Assume ϕ =


1

γ

0

. Then we can compute the Eθ(ϕ̃):

Eθ(ϕ̃) = P(ϕ = 1)P(1− γ > u > 0) + [P(ϕ = 1) + P(ϕ = γ)]P(u ≤ 1− γ)

= P(ϕ = 1) + γP(ϕ = γ)

= Eθ(ϕ)

Notice they are always same whenever θ ∈ Θ1 or ∈ Θ0.

Theorem 5.5. Let A : Θ→ 2X and S(X) = {θ ∈ Θ : X ∈ A(θ)}. Then S(X) is a level 1− α confident
set if and only if Pθ(X /∈ A(θ)) ≤ α, ∀θ ∈ Θ.

Example 40. Xi
iid∼ Poisson(λ). H0 : λ = λ0; H1 : λ 6= λ0. Its UMPU test is of form

ϕλ0
(x) =


1 x̄ < c1, x̄ > c2

γi x̄ = cj

0 o.w.

where cj and γj are chosen to have size α. Now, we want to find a level 1− α confident set for λ.
Letting u ∼ U(0, 1) independent of Xi, set

ϕ̃λ0
= 1(ϕλ0

(x) ≥ 1− u);

notice that ϕ̃ is a size α deterministic test. Its acceptance region is:

A(λ0) =


(c1, c2) min(γ1, γ2) > 1− u
[c1, c2) γ1 < 1− u ≤ γ2

(c1, c2] γ2 < 1− u ≤ γ1

[c1, c2] max(γ1, γ2) < 1− u
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Theorem 5.6 (UMP =⇒ UMA). Let θ be a level 1− α LCB for θ ∈ R for which

ϕ(x; θ0) =

{
1 θ(x) > θ0

0 o.w.

is a UMP size α test for H0 : θ = θ0 vs H1 : θ > θ0, ∀θ0 ∈ Θ. Then θ is UMA.

5.4 Unbiased confident sets

Definition 5.7.

• A confident set S(X) of level 1− α is unbiased if

Pθ(S(X) 3 θ) ≥ 1− α ∀θ
Pθ(S(X) 3 θ̃) ≤ 1− α θ̃ 6= θ

• A level 1 − α confident set S(X) is uniformly most accurate unbiased (UMAU) if it is unbiased
and for any other unbiased level 1− α confident set S′(X)

Pθ(S(X) 3 θ̃) ≤ Pθ(S′(X) 3 θ̃), ∀θ ∈ Θ, θ̃ 6= θ.

Theorem 5.8 (UMPU =⇒ UMPA). For each θ0 ∈ Θ, let A(θ0) be the acceptance region of a size α
UMPU test of H0 : θ = θ0 vs H1 : θ 6= θ0. Then S(X) = {θ : X ∈ A(θ)} is UMAU level 1− α.

5.5 Pivots

Definition 5.9. Let X ∼ fθ. A RV T (X, θ) is called a pivot if its distribution is free of θ.

Theorem 5.10. If a set C satisfies P(T (X, θ) ∈ C) ≥ 1− α, then

S(X) = {θ ∈ Θ : T (X, θ) ∈ C}

is a level 1− α confident set.

Example 41. Xi
iid∼ U(θ, θ + 1). Note X(n) − θ is a pivot. Let

P(a ≤ X(n) − θ ≤ b) = 1− α.

Then we get (X(n) − b,X(n) − a).

5.6 Shortest length confident intervals

Example 42. Xi
iid∼ U(θ, θ + 1). Let L = b − a such that F (b) − F (a) = 1 − α. First case b ≥ 1 and

a ∈ (0, 1). We solve 1− an − 1− α and get L = 1− α 1
n .

Second case b ∈ (0, 1) and a < 0. We find L = (1− α)1/n.
Finally, we need to compare 1− α1/n and (1− α)1/n.

5.7 Bayes credible intervals

Definition 5.11. A level 1− α credible interval is a random set S(X) ⊂ Θ such that

P(θ ∈ S(X) | X = x) = 1− α.

Example 43. Xi
iid∼ Bin(1, p). p ∼ Beta(α, β).

Compute its posterior: p|X = x ∼ Beta(α+ nX̄, β + n− nX̄).
Compute l(x) and u(x) such that

P(l(x) ≤ p ≤ u(x) | X = x) = 1− α.

Then (l(x), u(x)) is a level 1− α credible interval.
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5.8 Large sample confident intervals

Example 44. Xi
iid∼ Bin(1, p).

• Option 1

Notice that √
n(p̂− p) w−→ N(0, p(1− p))

where p̂ = X̄.

By Slusky’s,
√
n(p̂− p)/

√
p̂(1− p̂) w−→ N(0, 1).

=⇒ p̂±
√
p̂(1− p̂)/nz1−α is asymptotic level 1− α.

• Option 2

Let g : x 7→ 2 arcsin(
√
x). Then

√
n(g(p̂)− g(p))

w−→ N(0, 1).

=⇒ g(p̂)± 1√
n
z1−α is an asymptotic level 1− α CI for g(p).

=⇒ S(X) = {p : |g(p)− g(p̂)| ≤ 1√
n
z1−α} is an asymptotic level 1− α CI for p.
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