
Notes on Financial Modeling

Preliminaries

0.1 Itô’s Integral

• Distribution of
∫ t

0
ϕ(s)dBs: ∫ t

0

ϕ(s)dBs ∼ N(0,

∫ t∧s

0

ϕ2(u)du).

• Distribution of
∫ t

0
Bsds: ∫ t

0

Bsds ∼ N(0,
1

3
t3).

Proof. Apply Itô’s formula for tBt:

tBt =

∫ t

0

Bsds+

∫ t

0

sdBs.

Then ∫ t

0

Bsds =

∫ t

0

(t− s)dWs.

Then

E(

∫ t

0

Bsds)
2 = E(

∫ t

0

(t− s)dWs)
2 =

∫ t

0

(t− s)2ds.

• Itô’s formula.

• Solution to dXt = µXtdt+ σdBt.

– First, solve dXt = µXtdt:
Xt = Ceµt.

– Itô’s formula:
dXt = eµtdC + µ eµtC︸ ︷︷ ︸

Xt

dt

– And use dXt = µXtdt+ σdBt. We find

σdBt = eµtdC

and C is solvable.

– Finally, we get

Xt = σ

∫ t

0

eµ(t−s)dBs +X0e
µ−t.

1 Black-Scholes Model

BASIC SETTING

We consider the following processes under the objective measure P:

dBt = rBtdt

dSt = αStdt+ σStdW̄t (S)

where r is a constant; α and σ are α(t, St) and σ(t, St) respectively.
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DERIVE THE ARBITRAGE-FREE PRICE PROCESS

Assume χ = Φ(ST ) is a contingent claim with the date of maturity T . We want to find the arbitrage-free
price of χ = Φ(ST ).

1. Let Π(t) = F (t, St) denote the price of χ at time t. Apply Itô’s formula:

dΠ = Ftdt+ FsdS +
1

2
Fssd[S]

= Ftdt+ Fs (αSdt+ σSdW̄ )︸ ︷︷ ︸
(S)

+
1

2
Fss σ

2S2dt︸ ︷︷ ︸
(S)

= απΠ dt+ σπΠ dW̄

where απ = (Ft + FsαS + 1
2Fssσ

2S2)/Π and σπ = (FsσS)/Π.

2. Form a new relative portfolio for the given two assets S and Π, denoted by (us, uπ). It means,

if we have V dollars, then we use V · us dollars to buy stocks (Note: totally we can buy Vt·us(t)
St

stocks at time t) and use rest of our money to buy Π. By self-financing,

dV = V (us
dS

S
+ uπ

dΠ

Π
)

= V [usα+ uπαπ] dt+ V [usσ + uπσπ] dW̄

3. Notice that we can always construct a locally risk-less portfolios by choosing (us, uπ) such that the
equation usσ + uπσπ = 0 holds; so we have{

usσ + uπσπ = 0

us + uπ = 1

Solve it. {
us = σπ

σπ−σ
uπ = −σ

σπ−σ
(1)

4. Moreover, by the arbitrage-free condition, we must have

usα+ uπαπ = r.

In (1), we have solved us and uπ. And we also have solved απ and σπ. Then we obtain the
Black-Sholes equation: {

Ft + rsFs + 1
2σ

2s2Fss − rF = 0

F (T, s) = Φ(s)
(Black-Sholes)

5. LAST STEP! By Feynman-Kac formula, the solution to the PDE can be represented as

F (t, s) = e−r(T−t)EP
t,s [Φ(XT )]

where X is an Itô diffusion defined by

dXu = rXudu+ σXudWu, (2)

Xt = s.

Note that W is a Brownian motion under the objective measure P. The only difference between
(2) and (S) is that the drift for S is α rather than r. Applying the Girsanov’s theorem, X can
be explained as the stock price S on a new measure Q. Therefore, we re-write our basic setting
under Q as

dS = rSdt+ σSdS.

Then we have the following useful formula:

F (t, s) = e−r(T−t)EQ
t,s [Φ(ST )] (Price)
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Example 1.1 (Pricing European Call option). Now consider the simplest case:

dBt = rBtdt

dSt = αStdt+ σStdW̄t

where r, α, and σ are constant.
We want to price an European call option with the underlying stock S, the maturity time T , and the

strike price K. Let its arbitrage-free price process bet C(t, s). Let Φ(x) = (x −K)+. We directly use
the formula (Price):

C(t, s) = e−r(T−t)EQ
t,s

[
(ST −K)+

]
= e−r(T−t)

{
EQ
t,s [ST1{ST ≥ K}]︸ ︷︷ ︸

Part I

−K EQ
t,s [1{ST ≥ K}]︸ ︷︷ ︸

Part II

}
Recall that S is a geometric Brownian motion

ST = St exp

{
(r − σ2

2
)(T − t) + σ(WT −Wt)

}
.

Then we can represent Part I and Part II using the CDF of the standard normal random variable N(·).
Finally, we find

C(t, s) = e−r(T−t)
[
ser(T−t)N(d1)−KN(d2)

]
where

d1 =
1

σ
√
T − t

[
ln

s

K
+ (r +

1

2
σ2)(T − t)

]
,

d2 = d1 − σ
√
T − t.

This result is also known as Black-Scholes formula.

Theorem 1.2 (Put-Call parity). Let P (T,K) and C(T,K) be the price of an European put option and
call option at time 0 respectively with underlying asset S, maturity T , and strike K. Then

P (T,K) = Ke−r(T−t) + C(T,K)− S0.

Proof. By (Price), we directly have

P (T,K) = EQ
[
e−rT (K − ST )+ |S0

]
,

C(T,K) = EQ
[
e−rT (ST −K)+ |S0

]
.

Then let C(T,K)− P (T,K):

P (T,K)− C(T,K) = e−rTEQ
[
(K − ST )+ − (ST −K)+ |S0

]
= e−rTEQ [K − ST |S0]

= Ke−rT − S0

Example 1.3 (Pricing lnST ). • We want to find the arbitrage free price of Φ(S(T )) = lnS(T ). We
directly use Theorem 7.8 in the textbook:

Π(t) = e−µ(T−t)EQt,s[lnS(T )]. (thm7.8)

• Now we consider the distribution of lnS(T ) under the risk-neutral measure Q. Under the standard
Black-Scholes model,

dSt = µStdt+ σStdWt (7.43-7.44)
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where W is a Brownian motion under the risk-neutral measure Q; and we assume St = s. We know
that S is a geometric Brownian motion; so

ST = s exp

(
(µ− σ2

2
)(T − t) + σ(WT −Wt)

)
lnST = ln s+ (µ− σ2

2
)(T − t) + σ(WT −Wt)

EQt,s (lnST ) = ln s+ (µ− σ2

2
)(T − t)

• We plug it into (thm7.8):

Π(t) = e−µ(T−t) ·
(

ln s+ (µ− σ2

2
)(T − t)

)
.

Example 1.4 (Pricing SβT ). • We want to find the arbitrage free price of Φ(S(T )) = Sβ(T ). We
directly use Theorem 7.8 in the textbook:

Π(t) = e−µ(T−t)EQt,s[Sβ(T )]. (thm7.8)

• Now we consider the distribution of Sβ(T ) under the risk-neutral measure Q. Under the standard
Black-Scholes model,

dSt = µStdt+ σStdWt (7.43-7.44)

where W is a Brownian motion under the risk-neutral measure Q; and we assume St = s.. Using
Itô’s formula to Sβ(t):

dSβt =

(
µβ +

σ2

2
β(β − 1)

)
Sβt dt+ σβSβt dWt.

Obviously, Sβ is a geometric Brownian motion. We know the expectation of Sβ(T ) is

EQt,s(Sβ(T )) = sβ exp

(
(µβ +

σ2

2
β(β − 1))(T − t)

)
.

• Therefore, we just plug it into the formula (thm7.8):

Πt = sβ exp

(
(µ(β − 1) +

σ2

2
β(β − 1))(T − t)

)
.

Example 1.5 (Pricing K · 1[α,β] ◦ ST ). • First, the binary option is given by

Φ(ST ) =

{
K ST ∈ [α, β]

0 o.w.

Then we want to compute

Π(t) = e−µ(T−t)EQt,s[Φ(ST )]. (thm7.8)

• Now we directly compute the expectation of ΦS(T ) under the risk-neutral measure Q. Under the
standard Black-Scholes model, we have

ST = s exp

(
(µ− σ2

2
)(T − t) + σ(WT −Wt)

)
where W is a Brownian motion under Q. Obviously, under Q, WT −Wt ∼ N(0, T − t).
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Therefore, we compute its expectation

1

K
EQt,s[Φ(ST )] = Q [α ≤ ST ≤ β]

= Q

[
lnα ≤ ln s+ (µ− σ2

2
)(T − t) + σ(WT −Wt) ≤ lnβ

]
= Q

[
ln(α/s)√
T − tσ

≤ (µ− σ2

2
)
√
T − t/σ + (WT −Wt)/

√
T − t ≤ ln(β/s)√

T − tσ

]
= N(B)−N(A)

where N is the cdf of N(0, 1), A = ln(α/s)√
T−tσ − (µ− σ2

2 )
√
T − t/σ, B = ln(β/s)√

T−tσ − (µ− σ2

2 )
√
T − t/σ.

• We plug it into (thm7.8):

Π(t) = Ke−µ(T−t) (N(B)−N(A))

where A and B are given above.

Proposition 1.6. Linearity

Note The main idea for Exercise 9.1-9.3 is rewriting the claim as a linear combination of ΦB , ΦS and
ΦC,K (given by formula (9.2)-(9.4)). Then apply Proposition 9.1 and formula (9.5)-(9.7) on page 126.

Example 1.7. • Notice that

Φ(ST ) = K1{ST ≤ A}+ (K +A− ST )1{A < ST < K +A}
= K1{ST ≤ A}+ (K +A− ST ) (1{ST ≥ A} − 1{ST ≥ K +A})
= K1{ST ≤ A}+K · 1{ST ≥ A}+ (A− ST ) · 1{ST ≥ A} − (K +A− ST ) · 1{ST ≥ K +A}
= K · ΦB(ST )− ΦC,A(ST ) + ΦC,K+A(ST )

where ΦB(x) := 1 and ΦC,K(x) := (x−K) · 1{x ≥ K} = max[x−K, 0].

• Then by Proposition 9.1:

Π(t; Φ) = K ·Π(t; ΦB)−Π(t; ΦC,K) + Π(t; ΦC,K+A)

(Using formula (9.5)-(9.7)) = K · e−r(T−t) − c (t, S(t);K,T ) + c (c, S(t);A+K,T )

where the standard Black-Scholes model is given by

dSu = rSudu+ σSudWu.

Example 1.8. • Notice that

Φ(ST ) = (K − ST )1{ST ≤ K}+ (ST −K)1{K < ST }
= (K − ST )(1− 1{ST > K}) + ΦC,K

= (K · ΦB − ΦS + 2ΦC,K) (ST )

• Then by Proposition 9.1:

Π(t; Φ) = K ·Π(t; ΦB)−Π(t; ΦS) + 2Π(t; ΦC,K)

= K · e−r(T−r) − S(t) + 2c(t, S(t);K,T ).

Example 1.9. • Notice that

Φ(x) = B1{x > B}+ x1{A ≤ x ≤ B}+A1{x < A}
= B1{x > B}+ ((x−A+A)1{x ≥ A} − (x−B +B)1{x ≥ B}) +A1{x < A}
= ΦC,A(x)− ΦC,B(x) +A · ΦB(x)

• Then by Proposition 9.1:

Π(t; Φ) = A ·Π(t; ΦB) + Π(t; ΦC,A)−Π(t; ΦC,B)

= A · e−r(T−t) + c(t, S(t);A, T )− c(t, S(t);B, T ).
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GREEKS

Let P (t, s) be the pricing function for a portfolio based on a single underlying asset. For example, it
could be the price process of an European call option; it means we put all of money in this option. And
we are interested in its sensitivity with respect to the price change of the underlying asset or changes in
the model parameters.

Definition 1.10 (Greeks).

∆ =
∂P

∂s

Γ =
∂2P

∂s2

ρ =
∂P

∂r

Θ =
∂P

∂t

V =
∂P

∂σ

Example 1.11 (Greeks for European call option). Let N(·) be the CDF and ϕ be the PDF of standard
normal distribution. Then the corresponding greeks are

∆ = N(d1)

Γ =
ϕ(d1)

sσ
√
T − t

ρ = K(T − t)e−r(T−t)N(d2)

Θ = − sϕ(d1)σ

2
√
T − t

− rKe−r(T−t)N(d2)

V = sϕ(d1)
√
T − t

where

d1 =
1

σ
√
T − t

[
ln

s

K
+ (r +

1

2
σ2)(T − t)

]
,

d2 = d1 − σ
√
T − t.

Example 1.12 (Greeks for European put option). • By Put-Call parity:

p(t, s) = Ke−r(T−t) + c(t, s)− s (9.11)

where c(t, s) := c(t, s;K,T ).

• Recall that ∆P := ∂P
∂s where P is the pricing function for some options. We take derivative w.r.t.

s on both sides of the equation (9.11):

∂

∂s
p = 0 +

∂

∂s
c− 1

∆p = ∆c − 1

By Proposition 9.5, we know ∆c = N(d1). So

∆p = N(d1)− 1.

• For Γ, all steps are same. We take ∂2

∂s2 on both sides of the equation (9.11):

∂2

∂s2
p =

∂2

∂s2
c

Γp = Γc
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By Proposition 9.5, we know ∆c = ϕ(d1)

sσ
√
T−t . So

Γp =
ϕ(d1)

sσ
√
T − t

.

2 Bonds and Interest Rates

In this section, we will introduce the fixed income market. The simplest example is the zero-coupon
bond; if it pays 1$ at maturity time T , we want to decide its value at time 0. Assume the interest rate
r is fixed. Then the price of the zero-coupon bond at time t is given by

B(t, T ) = e−r(T−t).

Or it can be written as

dBt = rBtdt,

B(T, T ) = 1.

Moreover, we are also interested in the relation between the interest rate and the maturity time T . Based
on the model above, we can solve r for

r(T ) = − 1

T − t
logB(t, T ) ≡ r;

it is called the yield curve.

EXAMPLES

Example 2.1 (Vasicek model). Assume the rate r for a bond with maturity time T is given by

drt = a(m− rt)dt+ σdWt

where a, m, and σ are constant. Its price at time t is

B(t, T ) = EQ
(
e−

∫ T
t
rsds | Ft

)
• In this example, we want to find the precise representation of B(0, T ). First, we notice that

∫ T
0
rsds

is a normal distribution. Then we can compute its mean and variance:

EQ

[∫ T

0

rsds

]
=

∫ T

0

EQ(rs)ds = 0

by Fubini theorem; and

EQ

[
(

∫ T

0

rsds)
2

]
=

∫ T

0

∫ T

0

Cov(rs, ru)dsdu

=

∫ T

0

∫ T

0

σ2

2a

(
e−a(u−s) − e−a(u+s)

)
dsdu

=

Second, by the moment generating function of Gaussian random variable,

B(0, T ) =

• Then we can compute its yield curve.

Y (0, T ) = − 1

T − t
logB(0, T )

=
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• Comment on this curve

Example 2.2 (CIR model). Now assume the rate r is defined as

drt = a(m− rt)dt+ σ
√
rtdWt.

Then its price at time 0 is also

P (0, T ) = EQ
[ ∫ T

t

rsds
]
.

However, because in this case rt is chi-square distributed, we cannot write a nice formula for its price.

FORWARD MEASURE

“In finance, a T-forward measure is a pricing measure absolutely continuous with respect
to a risk-neutral measure but rather than using the money market as numeraire, it uses a
bond with maturity T. The use of the forward measure was pioneered by Farshid Jamshidian
(1987), and later used as a means of calculating the price of options on bonds.”

(Forward measure - Wikipedia)

Lemma 2.3. Let (X,Y ) be a bi-normal distribution under P?; that is,

(X,Y ) ∼P? Normal
((µX

µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

And assume P� P? with density
dP

dP?
=

e−λX

EP?e−λX
.

Then the distribution of Y under P is

Y ∼P Normal
(
µY − λρσXσY , σ2

Y

)
.

Proof. For convenience, we use E? to represent EP? . Directly compute the distribution function for Y
under P as follow:

P(Y ≤ t) =

∫
Ω

1{Y≤t} dP =

∫
Ω

1{Y≤t}
dP

dP∗
dP?

= E?
(
1{Y≤t} · e−λX

)
/E?(e−λX)

Obviously, E?(e−λX) doesn’t rely on t. So it remains to compute E?
(
1{Y≤t} · e−λX

)
.

It is well-known that

X|Y ∼? N
(
µX + ρ

σX
σY

(Y − µY ), σ2
X − ρ2σ2

X

)
;

and it implies that

E?(e−λX |Y ) = exp

{
−
[
µX + ρ

σX
σY

(Y − µY )
]
λ+ σ2

X

[
1− ρ2

] λ2

2

}
.

Now we have

E?
(
1{Y≤t} · e−λX

)
= E?

[
1{Y≤t}E?

(
e−λX |Y

)]
= E?

[
1{Y≤t} exp

{
−
[
µX + ρ

σX
σY

(Y − µY )
]
λ+ σ2

X

[
1− ρ2

] λ2

2

}]
=

∫ t

−∞

{
exp

{
−
[
µX + ρ

σX
σY

(y − µY )
]
λ+ σ2

X

[
1− ρ2

] λ2

2

}
· 1√

2πσ2
Y

e
− (y−µY )2

2σ2
Y

}
dy
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Take derivative on both sides. The PDF of Y under P is

fY (t) ∝ exp

{
−ρλσX

σY
t

}
· exp{− (t− µY )2

2σ2
Y

}

∝ exp{ (t+ λρσXσY − µY )2

2σ2
Y

}

Therefore, the distribution of Y under P is

Y ∼P Normal(µY − λρσXσY , σ2
Y ).

Example 2.4 (Call option on bonds). Assume a Vasicek model for the short-rate process r under the
pricing measure P?. We would like to price, at time 0, a call option with maturity T and strike K on a
zero-coupon bond with maturity T1 > T .

• Let its price at time t with maturity T is C(t, T ). Then we directly price the call option at time 0:

C(0, T ) = E?
[
e−

∫ T
0
rsds(P (T, T1)−K)+

]
= E?

[
e−

∫ T
0
rsds(P (T, T1)−K) · 1{P (T, T1) ≥ K}

]
= E?

[
e−

∫ T
0
rsds · P (T, T1) · 1{P (T, T1) ≥ K}

]
−K · E?

[
e−

∫ T
0
rsds · 1{P (T, T1) ≥ K}

]
For convenience we denote

(F1) = E?
[
e−

∫ T
0
rsds · P (T, T1) · 1{P (T, T1) ≥ K}

]
,

(F2) = E?
[
e−

∫ T
0
rsds · 1{P (T, T1) ≥ K}

]
;

then
C(0, T ) = (F1)−K · (F2).

• Compute (F1).

(F1) = E?
[
e−

∫ T
0
rsds · P (T, T1) · 1{P (T, T1) ≥ K}

]
= P (0, T1) · E?

[
e−

∫ T
0
rsds

P (0, T1)
· P (T, T1) · 1{P (T, T1) ≥ K}

]

Let
dPT1

dP ?
=
e−

∫ T
0
rsds

P (0, T1)
· P (T, T1).

So (F1) can be written as

(F1) = P (0, T1) ·PT1{P (T, T1) ≥ K}.

It remains to compute PT1{P (T, T1) ≥ K}.

• Compute (F2). Similarly, let

dPT

dP ?
=
e−

∫ T
0
rsds

P (0, T )
;

then we find

(F2) = E?
[
e−

∫ T
0
rsds · 1{P (T, T1) ≥ K}

]
= P (0, T ) · E?

[
e−

∫ T
0
rsds

P (0, T )
· 1{P (T, T1) ≥ K}

]
= P (0, T ) ·PT {P (T, T1) ≥ K}
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• Now we find

C(0, T ) = (F1)−K · (F2)

= P (0, T1)p1 −KP (0, T )p2

where p1 and p2 are given in (3) and (4), respectively.

DEFAULTABLE BONDS

Assume the interest rate is constant. We consider the following approaches to price the zero-coupon

bond at time 0. (Note: when r is not a constant, we change (T − t)r to
∫ T
t
rsds; and in this case, we

cannot take it out from the expectation.)

Merton’s Approach In this approach, the basic setting is

DEFAULT = {ST ≤ D}.

In this setting, the price of bonds is

PD(t, T ) = E?t,s
[
e−r(T−t)1{ST>D}

]
= e−r(T−t)P?

t,s [ST > D]

= e−r(T−t)N(d2)

where

d2 =
log( xD ) + (r − σ2

2 )(T − t)
σ
√
T − t

Black-Cox Approach Now we consider the first default time τ

DEFAULT = {min0≤t≤T St ≤ D}

In this setting, the price of bonds at time 0 is

PD(0, T ) = e−rT
(
N
(
d+

2

)
−
( x
B

)1−k
N
(
d−2
))

where k = 2r/σ2 and

d±2 =
± log

(
x
B

)
+
(
r − σ2

2

)
T

σ
√
T

.

Intensity Based Approach In this setting, we are given the intensity of 1{τ>T}. Then the bond
price is

PD(0, T ) = e−rTE?
[
e−

∫ T
0
λsds

]
FORWARD RATE AND YIELD CURVE

In this subsection, we summarize the previous results together.

Forward Rate

f(t, T ) =
E?
{
rT e
−

∫ T
t
rsds|rt

}
E?
{
e−

∫ T
t
rsds|rt

}
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Yield Curve

P (0, T ) = e−Y (0,T )T

Y (0, T ) = − 1

T
logP (0, T )

Yield Spread

PD(0, T ) = e−(Y (0,T )+Y S(0,T )T

Y S(0, T ) = − 1

T
log

PD(0, T )

P (0, T )

A Important Processes

Geometric Brownian Motion

Definition Let S be the solution to

dSt = µStdt+ σStdWt;

then S follows a GBM. And S can be represented as

St = S0 exp

[
(µ− σ2

2
)t+ σWt

]
.

Properties

ESt = S0e
µt

VarSt = S2
0e

2µt(eσ
2t − 1)

Ornstein–Uhlenbeck process

Definition Let r be the solution to

drt = θ(µ− rt)dt+ σdWt;

then r follows an O-U process. And r can be represented as

rt = r0e
−θt + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs

Properties rt is normal distributed with

rt ∼ Normal
(
µ+ (y − µ)e−θt,

σ2

2θ
(1− e−2θt)

)
.

And the covariance is given by

Cov(rs, rt) =
σ2

2θ

(
e−θ|t−s| − e−θ(t+s)

)
.

B Binomial Tree Approximation

Basic Setting

We model the stock price as
Sn = S0R1 . . . Rn
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where

Ri
iid∼

{
= u p? = 1−d

u−d
= d 1− p?

Let n =
⌊
t
ε

⌋
. Define the stock price at time t as

S̃t := lim
ε↓0

Sb tεc.

Rescaling

Rescale u and d: {
u = ea

√
ε

d = e−a
√
ε

Then we consider the Taylor expansion near ε = 0,

p? =
1− e−a

√
ε

ea
√
ε + e−a

√
ε

≈ 1

2
+
a

4

√
ε

Limiting

Now we compute the limit distribution of Sn:

log
Sn
S0

=

b tεc∑
i=1

logRi;

by the central limit theorem, it is approximated normal distribution. It remains to determine its mean
and variance. Because

E logRi =
a2ε

2
,

Var logRi = (log
u

d
)2p?(1− p?),

we find

log
Sn
S0
∼ Normal(−a

2

2
t, a2t).
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