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Abstract

In this thesis, we mainly focus on the properties of Anosov diffeomorphisms: structural stability and
topological transitivity of Anosov diffeomorphisms. Besides, we also pay attention on the classification
of nilmanifolds which admit Anosov diffeomorphisms. At the beginning of the thesis, we introduce some
basic concepts necessary to the topic such as metric spaces, Riemannian manifolds and topological dy-
namics. Then we mention some basic results in hyperbolic dynamics including the shadowing theorem
and the stable and unstable manifolds theorem. Using these tools, we prove that every Anosov diffeo-
morphism is structurally stable, and build some equivalent condition of topological transitivity of Anosov
diffeomorphisms. Finally, we present several examples of Anosov diffeomorphisms.
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1 Introduction

A diffeomorphism from a compact manifold to itself is called Anosov if the manifold is a hyperbolic set of the
diffeomorphism. The concept was introduced by a Soviet and Russian mathematician, Dmitri Victorovich
Anosov, who proved that Anosov diffeomorphisms are structurally stable and form an open subset of the
space of C'! diffeomorphisms with the C! topology [4].

Anosov diffeomorphisms play an important role in the theory of hyperbolic dynamics and have been
studied for more than a half century, but there are still several open problems left to be solved. Firstly,
whether every Anosov diffeomorphism is transitive is not known, although it is considered as highly probable
12].

Besides, classifying manifolds that admit Anosov diffeomorphisms is a main topic in this field, which is
raised in Smale’s paper [3]. Many results about the problems were proven. For example, the flat case was
solved, due to H. Porteous [22]. And for the case of nilmanifolds, in 2000 Wim Malfait gave a complete
answer for the nilmanifolds of dimension at most 6 [19]; in 2008 Jorge Lauret and Cynthia E. Will extended
the result to dimension 8 [18]. And for nilmanifolds modeled on a free c-step nilpotent Lie group with n
generators, they admit an Anosov diffeomorphism if and only if n > ¢ [21]. In 2015, the result of [21] is
generalized to the case of infra-nilmanifolds [23]. The problem can be also considered equivalent to the
classification of Anosov Lie algebra [20].

Moreover, it is also conjectured that every Anosov diffeomorphism is equivalent to a hyperbolic auto-
morphism on an infranilmanifold in topological sense [7]. For the simplest case, A. Avez proved that every
Anosov diffeomorphism on T? is topologically conjugate to an algebraic one [8]. And in 1969, under a
conjecture that the non-wondering points are equal to the whole tori, J. Franks gave a more general result:
Anosov diffeomorphisms on T™ is topologically conjugate to hyperbolic toral automorphisms [6]. Then in
1974, A. Manning proved that on infranilmanifolds all Anosov diffeomorphisms are topologically equivalent
to hyperbolic automorphisms [5]. In addition, S. E. Newhouse pointed out that Anosov diffeomorphisms
with codimension 1 is topologically conjugate to a toral automorphism [9]. We also notice that some partial
results have been studied [10H13].

Finally, we collect a lot of elementary results in the field of hyperbolic dynamics and list several basic
properties of Anosov diffeomorphisms in this thesis, which are the foundations of the results we list above.
In the future, we will pay more attention on hyperbolic dynamics, nilpotent Lie groups and Lie algebras,
infra-nilmanifolds, and other fields related to Anosov diffeomorphisms.

Structure of the thesis. In this thesis, we introduce some basic properties of Anosov diffeomorphisms
and give several classical examples of Anosov diffeomorphisms. Section 2 contains several necessary defi-
nitions and propositions which would be used in the rest of the thesis. In Section 3 we state some basic
results in the hyperbolic dynamics. In Section 4 we list and prove the basic properties of Anosov diffeomor-
phisms, and in Section 5 we firstly provide some necessary mathematical background, then construct several
examples of Anosov diffeomorphisms.
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2 Preliminaries and notations

Although we have attempted to limit the amount of prerequisites as minimal as possible, there are still
a large number of definitions necessary to our statement. Therefore, in this section, we introduce some
definitions which would be used. Any missing definitions can be found at the reference books, Introduction
to the Modern Theory of Dynamical Systems |1] and Introduction to Dynamical Systems [2].

We denote all of positive integers as N and all of non-negative integers as Ny in this thesis.

2.1 Metric Spaces
Definition 2.1 (Metrics). Let X be a set. A map d: X x X — [0,00) is called a metric on X if

1. d(z,y) = d(y, =),
2. d(z,y) =0 if and only if x =y,
3. d(z,y) + d(y,z) > d(x, z).

(X,d) is called a metric space, where d is a metric and X is a topological space with topology induced by
d. We also denote it by X when the metric is indicated.

Definition 2.2 (Complete metric space). Let (X,d) be a metric space. A sequence {xp}tr=12.. in X is
called a Cauchy sequence if Ve > 0, AN € N such that Vn,m > N we have d(z,, z,) < €.
We call a metric space X is complete, if every Cauchy sequence in X converges in M.

Example 2.3 (The space of continuous maps). Let X be a compact topological space, Y be a metric space
with a metric d, and C(X,Y) be the set of all continuous maps from X to Y.
Define a metric distg on C(X,Y) by

disto(f, g) = min{1, sup max{d(f(x), g(x))}}
BAS
for f,g € C(X,Y).
Note that if Y is a complete metric space, then C(X,Y) is complete as well, because its topology is as
same as that induced by the uniform metric when X is compact. Refer to [2,p.140].

2.2 Riemannian manifolds
In this subsection, we give a brief introduction to Riemannian manifolds.

Definition 2.4 (C* Riemannian manifolds). A C* Riemannian metric is a family of positive definite sym-
metric bilinear form {({ , )p}pem defined on the tangent space T,M with the following property: For any C*
vector fields X and Y, the map p — (X,,Y,), is C*.

A C* Riemannian manifold is a C* manifold with a C* Riemannian metric.

When k = oo, we call it a smooth Riemannian manifold.

In this thesis, we mainly focus on the smooth case.
Let z = (x!,...,2%) be local coordinates. The metric can be represented by a positive definite, symmetric
matrix

(9i5(2))ij=1,....d;

where g;;(z) is smooth. And we denote the inverse of the metrix by (gij(x))i,jzlw,d.
For every v € T, M, we define |[v|| = ((v,v),)'/2. Let [a,b] be a closed interval in R, and 7 : [a,b] — M
be a smooth curve. We define the energy of A by

1[0 dy 2
BO) =3 [ I

We now rewrite it in local coordinates:
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Then the Euler-Lagrange equations for the energy F are
B () + D (x(t)d? ()" (t) =0, i=1,....d

with the Christoffel symbols I', defined by

. 1 .
e = §gll(gjl,k + Gkij — ikl

a
where gj1x = 577 9j1-

Definition 2.5 (Geodesic). For a Riemannian manifold M, a differentiable curve 7y : [a,b] — M is called a
geodesic if it satisfies the Euler-Lagrange equations for the energy E(7).

It is well-known that the geodesics are the shortest curves between two points which are sufficiently close
and there always exist geodesics on compact manifolds. Moreover, for a compact Riemannian manifold M,
any p € M, v € T,M, there is a unique geodesic

¢yt (—00,+00) = M
with ¢(0) = p, ¢(0) = v; and ¢, continuously depends on p and v. Refer to [24] for more details.

Definition 2.6 (Exponential map). Let M be a compact Riemannian manifold, p € M. We define the
exponential map
exp, : TpM — M, by v — c,(1).

It is necessary to point out when M is not compact, the exponential map exp,, may not defined on the
whole of T, M. Fortunately, in this thesis, we only focus on the compact case, so exp,, is defined on the entire
T,M for every p € M by the Hopf-Rinow theorem[24, p.34].

Example 2.7 (Riemannian manifold as a metric space). Let M be a connected compact C* Riemannian
manifold. For any x,y € M, there is a C* path connecting x and y, that is, a C* map ~ : [0,1] — M with
v(0) =z and y(1) = y. We can define the length of v by

! dy
L( —/ fdtH.
V) o | 1t

Now we have
d(x,y) = inf{L(v) : v is a C' path connecting = and y},

which makes M a metric space.
Moreover, M 1is a complete metric space by the Hopf-Rinow theorem.

Example 2.8 (The space of C! maps). Let M,N be C' Riemannian manifolds, C*(M, N) be the set of all
C"' maps from M to N.

Recall that the Riemannian metric on M induces a metric on the tangent bundle T M naturally.

Define a metric dist; on C1(M, N) as follow:

dist1(f, g) = disto(df,dg)

for f,g € CY(M,N).

2.3 Topological Dynamics

In this subsection, X denotes a locally compact separable metric space, and f is always continuous.

Definition 2.9 (Topological dynamics). A topological space X with a continuous map f: X — X is called
a discrete-time dynamical system.

In this thesis, every dynamical system means the discrete-time dynamical system.

Definition 2.10 (Periodic points). A point © € X is called periodic point of f : X — X with period n € N,
if f™(x) =x. The set of all periodic points of f : X — X is denoted by Per(f). The smallest positive n € N,
such that f™(x) = x is called minimal period of x.
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Definition 2.11 (Non-wondering points). A point © € X is called a non-wondering point of f : X — X,
if for any neighborhood U of x, there exists n € N such that f*(U) N U is a non-empty set. The set of all
non-wondering points of f : X — X is denoted by NW(f).

Definition 2.12 (Topological transitivity). A topological dynamical system f : X — X is called topologically
transitive if for any two non-empty open sets U and V, AN € Z such that fN(U)NV # (.

Definition 2.13 (Topological mixing). A topological dynamical system f : X — X is called topologically
mizing if for any two non-empty open sets U and V, AN > 0 such that f"(U)NV # 0 for allm > N.

From the definitions above, it is obvious that if a topological dynamical system is topologically mixing
then it is topologically transitive. Usually, there are topologically transitive maps which are not topologically
mixing, such as an irrational rotation of the circle. However, for Anosov diffeomorphisms, topological mixing
is equivalent to topological transitivity, which would be shown in Section 4.2.

Definition 2.14 (Topological conjugacy). A map f : M — M s called topologically conjugate to a map
g: N — N if there exist a homeomorphism h : M — N such that f = h™'gh.

3 Hyperbolic Sets and Anosov Diffeomorphisms

In this section, we denote M a C! manifold, U a non-empty open subset of M, f : U — f(U) C M a C*
diffeomorphism, and df : TM — T M the differential of f. Several proofs require too much materials beyond
the preliminaries we write before; therefore, for these proofs, we only give a sketch of proof or provide the
references.

Definition 3.1 (Hyperbolic sets). A compact, f-invariant subset A C M is called hyperbolic if there are C!
Riemannian metric, A € (0,1), C > 0 such that

1. TA\M = E° @ E¥

2. df,B*(x) = B*(f(x)) and df, B"(x) = B*(f(x))

3. ||dfmo|| < CNM|vl| for allv € E*(x) and n > 0

4. \ldf; ™| < CANM|v]| for all v € E*(z) and n > 0
Proposition 3.2. E*(z) and E*(x) continuously depend on x.

Proof. We will prove for any converged sequence {z,, }nen in A with the limit « we have lim,, o, F*(z,) =
E?¢(z) and lim, o0 E%(x,) = E*(z).

Assuming that dimFE®(z;) = k, a constant, we let wy ;, wa, ..., wk,; be an orthonormal basis of E®(x;).
Let i tend to infinity, then we can get wy, ..., wy, an orthonormal subset with property ||df7w;|| < CA™|lw;]|
for all n € N. Therefore, {wy, ..., w;} C E*(x), which implies lim, o E*(z,) C E*(z) and dimE*(z) > k.

Similarly, we can get dimE"(x) > s — k, where dimT,, M = s.

Besides, by s = dimT, M = dimFE*(z) + dimE*(z) > s — k + dimF*(x), k > dimE?*(z). Therefore,
dimE*(z) = k and wy,...,w; form a basis for E®(x). It means lim,_,. E*(z,) = E°*(zo). Similarly,
limy, 00 B(zy,) = E%(2). O

Definition 3.3 (Anosov diffeomorphisms). A diffeomorphism f: M — M s called Anosov diffeomorphism
if M is a hyperbolic set of f.

We will use the following theorem to prove the structural stability of Ansov diffeomorphisms:

Theorem 3.4 (Shadowing Theorem). Let A be a hyperbolic set of f : U — f(U) C M. Then there is an
open set O C U containing A and €g, dg > 0, satisfying:

Ve > 0,30 > 0 such that for any g : O — M with dist1(g, f) < €, any homeomorphism h : X — X of a
topological space X, and any continuous map ¢ : X — O with distg(oh, go) < 0 there is a continuous map
Y X — O with vh = gy and disto(p,¥) < e.

Moreover, if 'h = gy’ for some ¢’ : X — O with disto(d,¢') < § then ' = 1.
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Sketch of proof. Refer to [1, p.566] for the details.
We will apply the contraction mapping principle in the proof. Notice that the desired map ¢ : X — O
is a fixed point of
F:C(X,0) = C(X,M),s) — gibh™'.

In order to keep disto(¢, 1) < €, for sufficiently small § > 0, consider the map
A: By(¢) = Cy(X, TM),

given by (Av)(y) = expy(, ¥(y),

where exp;1 is the inverse of exponential map of M at p, By(¢) = {¢p € C(X,0) : disto(d,v) < 0},
Cy(X,TM) ={ve C(X,TM) :v(y) € Ty M,Vy € X}.
Then we define F'* = AF A~ which can be decomposed into linear and nonlinear parts, that is, F'®(v) =
dF{v + H(v). Now we define
T(v) = —(dF —1d)" H(v).

T can be proved to be contracting on a sufficiently small neighborhood of ¢. By contraction mapping
principle, we obtain v, the fixed point of T. Now we find a fixed point of F, A~ w. O

Besides, we introduce a criterion for hyperbolicity.
Firstly, given a continuous direct sum decomposition ThaM = E* @ E", that is for every x € A and
v € T, M we have v = v® + v" where v® € E*(x) and v* € E"(x), and E®(x), E*(z) continuously depend on
x.
For o > 0, let us define
Ko () = {v e TM : "] < aflv’[]},

Kq(x) = {v e ToM - |[v*]| < aljo”|}.

They are called stable and unstable cones of size o, respectively.
Let A be a hyperbolic set of f.

Proposition 3.5. Va > 0, de > 0 such that Vo € A, we get df,(KY(x)) C {0} Uint(K¥(f(z))) and
AL (K5(f (@) € {0} Uint (K3 (2)):

Proof. For x € A, let v =v° 4+ 0" € K¥%(x). We will prove ||df,(v®)|| < a||df.(v™)]].
Firstly, note that there exists a metric such that the hyperbolic set A is with the constant C' = 1 and
A € (0,1), which is called an adapted metric. So by the hyperbolicity ||df,v®|| < A||v*||. Then by the definition
of K¥(x) we have ||df,v*|| < a||v*|. Applying the hyperbolicity again, ||df,v*|| < aX?||df.v"|| < a|df.v?.
The second equation can be proved similarly. O

Proposition 3.6. Vd > 0, Ja > 0 such that Vo € A, ||df; 10| < (A +9)|v|| for v € K¥(x) and ||df.v] <
A+ 0)|Jv|| forve Ki(x).

Proof. For x € A, let v =v° 4+ 0" € K2(z). Choose the adapted metric as the proposition above.

Notice that when |[v|| = 1, ||dfzv"]| — 0 as & — 0, by continuity. So for every ¢ > 0, there exists an «
such that ||df,v*|| < 4.

Then we have [[df,v] < [[df,o°]| + ldf.v*]| < Alloll + dlle]l = (A + ) o]

The first inequality for v € K¥(x) can be proved similarly. O

Proposition 3.7. Let f : U — f(U) C M be a C diffeomorphism and A be a compact invariant set for
f:U — M. If there are « > 0, A € (0,1) and subspaces decomposition TaM = Es @ E" such that E‘S(x)
and E“(:c) continuously depend on x, and the stable cones K7 and unstable cones K} of size o determined
by the decomposition satisfy the following properties for any x € A:

1. df K@) € K2(f(@)) and df ;L K3 (f (@) © K3(a),
2. ||dfovll < ||l for 0 # v € K5 (2) and ||df; ol < |Jv]| for 0 # v € K&(a).
Then A is a hyperbolic set for f.
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Proof. Firstly by the compactness we have IA € (0,1) such that ||dfzv]] < A||v| for v € KZ(z), and
ldf vl < AlJv|| for v € K%(z). For z € A, we define

) = () dfylt,) K (" (),

n>0
z) = () dffn (o K" (F " ().
n>0
Then A is hyperbolic set of f with decomposition Ty M = E°* @ E*, constant A and C = 1. O

At the end of the section, we present an important concept, stable and unstable manifolds. Their
denseness is highly relevant to the topological transitivity of Anosov diffeomorphisms, which will be shown
in Section 4.

Definition 3.8 (Stable and unstable manifolds). For a hyperbolic set A of f:U — f(U) C M and every
x € A, we define stable manifolds of x by

W*(z) ={y € M : d(f"(x), f"(y)) = 0 as n — oo}
and unstable manifolds of x by
W(w) = {y € M : d(f (@), /() = 0 as n — oo},
Definition 3.9. For an Anosov diffeomorphism f: M — M and any € > 0, we define
We(x) ={y € M : d(f"(z), f"(y)) < & Vn € No},

We(z) ={y € M :d(f™"(x), /" (y)) <e&Vn e No}.

The stable and unstable manifolds theorem[2, p.121] have shown the existence of W* and W*. In this
thesis, we do not need all of the results of the theorem. Therefore, a part of results are collected in the
following proposition.

We denote the distances along the stable and the unstable manifolds by d® and d" respectively.

Proposition 3.10. For an Anosov diffeomorphism f : M — M, there are A € (0,1), C, >0, €,6 > 0, and
a splitting TyM = E®(x) ® E*(x) for all x € M such that:

1. dfo(E*(z)) = E°(f(2)), and dfe(E"(x)) = E"(f(2));

Vo* € E*(x), |ldfsv®|| < Aljv°|l, and Yo € E* (), ||df;  o" || < Aljo*];

Yy € W*(z), d°(f(), f(y)) < d*(z,y), and Yy € W(z), d°(f ' (z), f 1 (y)) < d"(z,y);
fWe () = We(f(2)), and f(W*"(x)) = W*(f(x));

T, W#(z) = E*(z), and T,W"(x) = E*(x);

%S"I“?GN

if d(z,y) <6, W (x) "NWE(z) = {pa,y }; moreover, p,,, continuously depends on x,y, and d*(py y,x) <
de(337 y): d (pamyv y) < de(l‘, y)

Proof. Tt is a direct result from Hadamard-Perron theorem in [1, p.242] and Proposition 5.9.1 in [2, p.128]. O

4 Properties of Anosov Diffeomorphisms

4.1 Anosov diffeomorphisms are structurally stable

Definition 4.1 (Structurally stability). A4 C! map f: M — M s called structurally stable if there exists a
neighborhood U of f in the Ct topology such that every g € U is topologically conjugate to f.

Lemma 4.2. Let A be a hyperbolic set of f : U — M. There is an open set U(A) containing A and ey > 0
such that if K C U(A) is a compact invariant subset of a diffeomorphism g : U — M with disty(g, f) < eo,
then K is a hyperbolic set of g.
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Proof. Notice that E*(z) and E*(x) continuously depends on z by Proposition 3.2; therefore, we can contin-
uously extend the subspace decomposition to Ty a)M = E* @ E*. By Proposition 3.5 and Proposition 3.6,
the cones K2 (z) and K!(x) with € U(A) determined by the decomposition have the following properties:

L df, K2 () © KE(f(2)) and dfy L K3(f(2)) © K3 (2);
2. ||dfzv| < A+ 8)|v] for 0 # v € Ki(z) and ||df; o] < (A +6)|Jv|| for 0 # v € K¥(x).

And we have dist (f, g) = disto(df,dg) < €o. For a sufficiently small ¢y we can replace f by g.

That is, for 0 # v € K3(z), ||dg.v|| < disto(df,dg)||v]| + (A + 9)||dfzv] < [Jv||. Similarly, ||dg.v| < ||v]]
for 0 v € K2(x), dg, K2 () ¢ K2(g(x)) and dg.., K3(9(x)) C K(x)

Then by Proposition 3.7, the proof is finished if we let K be an compact invariant subset of U(A). O

Corollary 4.3. Anosov diffeomorphisms form an open set in Diffl(M).

Proof. Let f : M — M be an Anosov diffeomorphism. By Lemma 4.2, there is e > 0 such that for any
diffeomorphism g : M — M with distq (g, f) < €7, g is an Anosov diffeomorphism. O

Theorem 4.4. Let A C M be a hyperbolic set of the diffeomorphism f: U — M. Then for every open set
V C U containning A and every € > 0, there exists 6 > 0 such that if g : V — M with dist1(f, g) < J, there
is a hyperbolic set K of g and a homeomorphism x : K — A such that xg = fx and disto(x,Id) < e.

Proof. By the Shadowing Theorem, for every € > 0 there exists § > 0 such that if we are given X = A, h =
fla,®» =1dp and g : V — M is choosen to satisfy dist;(f,g) < 0, there is a continuous map ¥ : A — U with

Yfla = gi.

Set K = 4(A). By Lemma 4.2, there exist ey > 0 such that K is a hyperbolic set of ¢ if dist1(f, g) < €.
Therefore, we can let § above be not greater than €y to keep the hyperbolicity of K.

Now since K is hyperbolic set of g we can apply the Shadowing theorem again by taking X = K, h = ¢|k,
¢ = Idg. There is a continuous map ¢’ : K — U with ¢/g|x = f|a?'.

By the equation above, we can get ¢¥'1 f|x = flav'y and gk’ = i)' g|Kk. By the uniqueness, we get
Y1)’ =1dp and Y1)’ = Idg. That is =1 =/,

Finally, let the homeomorphism y : K — A be v’ to finish the proof. O

Corollary 4.5. Anosov diffeomorphisms are structurally stable.

Proof. Let f: M — M be an Anosov diffeomorphism. By Theorem 4.3, for every € > 0, there is § > 0 such
that for any g : M — M with dist1(f,g) < 0, we get a h : M — M with distg(h,Id) < € and hg = fh.
Therefore, f is structurally stable by Definition 4.1. O

4.2 Topological transitivity of Anosov diffeomorphisms
In this subsection, M is a connected compact Hausdorff smooth Riemannian manifold.
Lemma 4.6. Let f: M — M be an Anosov diffeomorphism. Then Per(f) is dense in NW(f).

Proof. Tt is sufficient to prove that for any x € NW(f) and ¢ > 0 there exists p € Per(f) such that
d(z,p) < 2e.
For every e > 0, choose § € (0,€) by the Shadowing theorem. Because V = {z € M : d(z,2) < §/2} is a
neighborhood of € NW(f), there is a n € N such that f”(V) NV is nonempty. Take a z € VN f~"(V).
Let h : Z,, — Zy, by h(m) = m+1, ¢ : Z, — M by ¢(m) = z,, where z,,, = f™(2). Since d(zm+1, f(2m)) =
0 for every m < n—1in Z, and d(zn, f(2n-1)) < d(z,2)+d(z, f"(z)) < J, by the Shadowing theorem, there

exists {pm }mez, such that ppr1 = f(Pm), Po = f(Pn-1) and d(ppm, 2m) < €.
We get d(po, x) < d(po, z) + d(z,z) < 2e. O

Definition 4.7 (e-dense). A subset A C X is called to be e-dense in a metric space (X,d) if d(x, A) < € for
every x € X.

Theorem 4.8. Let f: M — M be an Anosov diffeomorphism. Then the following are equivalent:
1. NW(f) =M,
2. Every unstable manifold is dense in M,

3. Ewvery stable manifold is dense in M,
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4. [ is topologically transitive,
5. f is topologically mizing.

Proof. 1 = 2: We need to prove that Ve > 0, Vo € M, the unstable manifold W*(z) is e-dense in M.
Firstly, for any € > 0, we construct a ¢/4-dense set with finite elements in Per(f). By Lemma 4.6, Per(f) is
dense in M, which implies M =, ePer(f) B(z,€/4). Therefore, by compactness of M, there are N elements

in Per(f), {x;}i=1,2.... ~, such that M = Uf\il B(x;,¢/4). That is, Va € M, 3i such that dist(z,x;) < €/2
and z; # x.

Let the product of their periods be P and define g = f¥. We prove that ¢g and f have the same unstable
manifolds, so we can use the unstable manifolds of g to instead of those of f. Let W¥%(z) = {y € M :
d(g"(z),g"(y) — 0 as n — oo} be the unstable manifolds of g at x. Obviously, W*(x) C W“(x) Because f
is C1, for every n € N, d(f"F*1(z), f*Pi(y)) < d(f*F(x), f*F(y)). Then W (x) C W¥(z).

And we need to notice the following lemma;:

Lemma 4.9. 3¢ € N such that if for some y,x;,x; such that dist(W"(y),x;) < €/2 and dist(x;,x;) < €/2,
then we have dist(¢g™(W"(y)), z;) < €/2 and dist(¢"™I(W"(y)), z;) < €/2.

Proof. We choose appropriate € to make sure that W*(y)NW$(x;) # () for a sufficiently small e by Proposition
3.10.

Then let z € W¥(y) N W¢(xz;). Because z € W#(x;) = Uo— fT"WE(f™(2;)), there is a to such that
dist(¢'(2), ;) < €/2 for all t > t; (We need note that ¢*(z;) = x;). Then we have dist(¢*(W"(2)),z;) < €
by the triangle inequality.

We can gain a w € W*(g*(z)) N W2 (z;) for a sufficiently small ¢’ by Proposition 3.10, for the distance
between g'(W"(z)) and z; is small enough. Because w € W#(z;), there is a so such that dist(¢7 (w), z;) < €/2
for all 7 > sg.

Finally, we make ¢ = sg + to to finish the lemma. O

Since the set {z;}i=12, . ~ is €/4-dense, Yy € M, 3z such that dist(¢"?(W"(y)),zs) < €¢/2. And for
any x; there is a chain in {z;};=1,2,... n which connects z; and z, and the distance between two consecutive
points less than €/2, because M is compact and connected. Note that the length of the chain will not be
larger than N.

Therefore, for every z € M, if we choose i such that dist(z, ;) < ¢/2 and let y = g~ N9(z) for any x, we
can obtain dist(W"(z)), z) < dist(W"(x)),x;) + dist(z;, 2) < e. It means W¥(x) is e-dense in M for any
z € M and € > 0.

1 = 3: Similarly.

2 = 5: We need to prove that 3N, Vn > N, f(U) NV # () for any non-empty sets U and V, by the
definition of topoligically mixing.

Let us choose z,y € M and § > 0 such that W§*(z) C U and B(y,d) C V. Notice that f"(Wy'(z)) C
f™(U), for any n € N.

Lemma 4.10. If for every x € M, W¥(x) is dense in M, then V6 > 0, 3R = R(6) > 0 such that every ball
of radius R in every unstable manifold is e-dense in M.

Proof. Because W"(x) = Ui Wg(z) is dense in M, there is R which depends on x and W§(z) is €/2-dense
in M. Since W* is a continuous foliation, we get §(x) such that W (y) is e-dense, Vy € B(z, d).

Now we have M = (J,c,; B(z,0(x)). By compactness we find a finite collection for those balls B(z,d(x)).
Then choose the maximal R(x) for those balls to finish the lemma. O

Notice that IN, Vn > N, WE(f"(z)) C fM(W§(x)).

By the lemma above, for n > N, B(y,d) N Wa(f"(z)) # 0, which means V' N f*(U) # 0. Hence f is
topologically mixing.

3 = 5: Similarly.

5 = 4 = 1: It is obvious by their definitions. O

5 Examples

In this section, we firstly introduce a procedure to construct an Anosov diffeomorphism on nilmanifolds.
Then we will follow the procedure to give several examples of Anosov diffeomorphisms.
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5.1 A brief introduction to nilmanifolds
Before giving the detail of the construction, we need to give a brief introduction to nilmanifolds.

Definition 5.1 (Lie groups). A group G with a smooth manifold structure is called Lie group, if the following
group operations are smooth:
(a,b) — ab,
a — a_l,
where a,b € G.
Definition 5.2 (Lie group homomorphisms). Given Lie group G and H, A map g : G — H is called a Lie
group homomorphism if it is a smooth map and also a group homomorphism from G to H.
It is called a Lie group isomorphism if it is also a diffeomorphism.
A Lie group isomorphism g : G — G is called a Lie group automorphism.

And in the rest of the subsection, we use G to represent a Lie group.
By the definition above, we can define the following smooth map, left transition for every g € G:

Lg(h) = gh.

In fact, Ly : G — G is a diffeomorphism with smooth inverse L,-1. Therefore, for an arbitrary smooth
vector field X, we can obtain (L), X, a smooth vector field, which is defined as following:

((Lg)«X)n = (dLg)g-1n(Xg-11),

where h € G.
Now we give a brief introduction to Lie algebras.

Definition 5.3 (Lie algebra). Let L be a vector space. A map from L x L to L denoted (X,Y) — [X,Y] is
called a Lie bracket on L if

1. the map is bilinear;
2. VX € L, [ X, X] =0;
8. VXY, Z e L[X, [V, Z]| + [V, [Z, X]] + [Z,[X, Y]] = 0.

The last condition is called Jacobi identity.
The vector space L with a Lie bracket is called a Lie algebra.

Definition 5.4 (Lie algebra homomorphisms). A wvector space homomorphism ¢ : L — L’ is called a Lie
algebra homomorphism, if $([X,Y]) = [¢(X), p(Y)].
A wvector space isomorphism ¢ : L — L' is called a Lie algebra isomorphism if ¢([X,Y]) = [¢p(X), ¢(Y)].
A Lie algebra isomorphism ¢ : L — L is called a Lie algebra automorphism.
We call a Lie algebra automorphism is hyperbolic, if its eigenvalues are away from the unit circle.

Definition 5.5 (Structure constants of Lie algebras). Let L be a Lie algebra with a basis X1, Xa, ... X,. We
have

(X0, X5 = af; X,
k=1

for any i,j <mn. We call those a?j

are structure constants of L.
Example 5.6 (Lie algebra of G). Now we define a Lie algebra associated with Lie group G. Firstly we let
Lie(G) = {X is a smooth vector field on G: (Ly).X = X,Vg € G}.
And for any smooth vector fields X,Y on G, define a smooth vector field [X,Y] by
X,Y)f = XY[-YX/,

for every smooth map f : G — G. (Note that [X,Y] is a smooth vector field although we have not shown
that; refer to this [15].)
Lie(G) is called Lie algebra of G, and the map (X,Y) — [X,Y] is a Lie bracket on Lie(G).
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We define [x,y] = x~ 'y tzy. Notice the lower central series of G:

1(G) =G,

Yi+1(G) = [v(G), G].
Definition 5.7 (Nilpotent Lie group). G is called a nilpotent Lie group, if In € N such that v,(G) = 1.

Definition 5.8 (c-step nilpotent Lie group). G is called a c-step nilpotent Lie group, if v.(G) # 1 and
Yer1(G) = 1.

Definition 5.9 (Lattice). N is a simply-connected and nilpotent Lie group. Let T be a discrete subgroup of
G. It is called a lattice in G if G/T is a compact quotient space.

Note that the quotient space G/I" must be a smooth manifold by Theorem 21.29 in Lee’s book [15]. Some
nilpotent Lie groups do not admit any lattices. Therefore, we need the following criterion:

Proposition 5.10 (Maltsev’s criterion). A nilpotent Lie group N admits some lattices if and only if all of
the structure constants of Lie(N) are in Q.

Proof. Refer to Theorem 2.12 in Raghunathan’s book [16]. O

Definition 5.11 (Nilmanifolds). A differential manifold N/T is called a nilmanifold, if N is a simply-
connected nilpotent Lie group and I is a lattice in N.

Example 5.12 (R™ as a Lie group). R™ is a Lie group with the group operation +. Obuviously, R™ is an
abelian group, so a nilpotent Lie group.
Moreover, it is well-known that R™ is simply-connected.

Example 5.13 (T™ as a Lie group). It is easy to verify that Z™ is a normal subgroup of R™. And it is also
a closed Lie subgroup of R™, for it is discrete subgroup. Therefore, T™ = R™/Z"™ is a Lie group.
And T™ 2 S' x St x ... x St, which implies compactness. So Z™ is a lattice of R™.

5.2 Example: An Anosov diffeomorphism on tori

Now we can introduce the procedure to construct an Anosov diffeomorphism on a nilmanifold. Let N be a
simply-connected nilpotent Lie group, I' be a lattice in N, f : N — N be a Lie group automorphism of N
such that f(I') =T, and dfiq : TialN — TiaN, the Lie algebra automorphism induced by f, is hyperbolic.
Obviously, the procedure induces a Anosov diffeomorphism f : IV, /T — N/T on a nilmanifold.

The procedure is reasonable because Smale pointed out that if a Lie algebra admits a hyperbolic Lie
algebra automorphism then it must be nilpotent, which forces N to be nilpotent and I' to be a uniform
discrete subgroup [3|.

Then we will construct an Anosov diffeomorphisms on T? as an example.

Example 5.14. As we show in Ezample 5.12 and Example 5.13, R? is a simply-connected nilpotent Lie
group and Z? is a lattice in R?.

Firstly, we define a linear map L : R? — R? given by the matrix <? }) Because detL = 1, we have

L(Z?) = Z*. And we denote the eigenvalues of L by A and 1/\, where the value of \ is 3_2‘/5,
The map L induces o diffeomorphism Fr, : T2 — T2 by

Fr(z,y) = 2z +y,z + y)(mod 1),
where x,y € R/Z.
Now we prove that Fp, is an Anosov diffeomorphism.

Proposition 5.15. Fp is an Anosov diffeomorphism.

10
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Proof. For any p € T?, the differential of Fy, at p is a vector space isomorphism (dF'L)p Tp'JI‘2 — TFL(p)TQ.

The matrix of (dFp), in term of the coordinate basis is (f 1)

Then we have a dirct sum decomposition, 7,T? = E;® Ey, where E, Ef are eigenspaces associated with
A, 1/, respectively. It is easy to verify that {E)},cr2 ({E£} }per2) form the stable (unstable) distribution of
Fy,.. Therefore, F, is an Anosov diffeomorphism. O

Finally, we prove that Fy, is topologically mixing. It is sufficient to prove Per(F7) is dense in T2. By
Lemma 4.6 and Theorem 4.8, F, is topologically mixing.

Proposition 5.16. The periodic points of Fr are dense in T?.

Proof. We claim that all points with a rational coordinate are periodic points. The claim implies the
proposition is true. Now we prove the claim. Firstly, we let p = (s/q,t/q) € T?, an arbitrary point with a
rational coordinate.

Consider the set of rational points on T? with denominator ¢. It is a finite set with ¢? element and
contains {F?(s/q,t/q)}n>0, which means that 3M, N € N such that FM(s/q,t/q) = FN(s/q,t/q).

Now recall that F7, is a diffeomorphism. The proof is finished.

5.3 Example: An Anosov diffeomorphism on a nontoral manifold

In this subsection, we firstly introduce the Heisenberg group and use it to construct another example of
Anosov diffeomorphism.

We define the Heisenberg group

z,y,z € R

Il
O O =
O = 8K
— QW

with the matrix multiplication.
The Lie algebra of H is given by

Lie(H) =

o
o

y|lz,y,z € R
0

o
o

o O
o O
—= O

01 0
xX=100 0], v= , and Z =
00 0

o O O
o O O

1
0
0

o
(en]
(en)

with generators

A
0
connected nilpotent Lie group. Moreover, the basis of Lie(G) contains

X 0 Y 0 Z 0
Xl_(o 0>a}/1_<0 0)7Z1_<0 0)7

0 O 0 0 0 0
oo x) %= v) 2= 2)

For any A > 1, we define F : Lie(G) — Lie(G) given by

Now we can begin our construction. We let G = H x H = ‘A, B e H}, which is a simply-

oo
~—

F(X1)=MX1, F(X5)=\1X,,
F(Y1) = )XYy, F(Y) =\"%Ys,
F(Z)) = X7y, F(Zy)=\"32,,

which is a hyperbolic Lie algebra automorphism on Lie(G).

11
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By Proposition 5.10, G admits some lattices because [X,Y] = Z and other Lie brackets of generators are
zero. Actually we can give a lattice I" defined by expy(7y) with

A 0 0 =z =z
v = (O U(A)) €Lie(G)|[A=|0 0 y| forz,y,z are algebraic integer in K » ,
0 0 0

WhereK:@(\/g) ={a+bV/3:a,bcQ}, g:a+bv/3 = a—bV3.
Notice we have the following decomposition:
Lie(G) = Lie(G*) @ Lie(G?),
w_ J[A O . s _J(0 O
where G* = {(0 0)'/1 € LIC(H)}, and G* = {<0 B>

By Lie group and Lie algebra theory, there is a unique automorphism f : G — G with df|;q = F and
f(T) =T. It induces an Anosov diffeomorphism of G/T".

Be Lie(H)}.
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