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Abstract—In reinforcement learning (RL), addressing general-
ization across different environments is essential, especially given
uncertain model perturbations. Our work introduces the Robust
Conservative Policy Iteration (RCPI) algorithm, employing the
distributionally-robust optimization (DRO) framework with the
bilevel optimization algorithm to solve robust Markov Decision
Processes (MDPs). This novel approach ensures monotonic policy
improvement in worst-case scenarios, with theoretical guarantees
of convergence to an optimal policy under mild assumptions,
providing the iteration complexity of Op 1

1´γ
1
ϵ2

q and the sample
complexity of Opϵ´5

q to achieve the ϵ-accuracy in the worst-
case value function. Empirical tests on synthetic environments
demonstrate RCPI’s superiority in deriving resilient and reliable
policies, outperforming traditional strategies.
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I. INTRODUCTION

REINFORCEMENT learning (RL) plays a pivotal role in
modern machine learning research, particularly in the

domain of training RL agents to perform well in dynamic
environments while maintaining high performance even for the
worst-case scenario [1]–[4]. Many real-world applications are
rooted in the development of this field, such as control [5],
power system [6], robotics [7] and autonomous driving [8].
This challenge of generalization often encounters a significant
drop in performance due to model discrepancy, a phenomenon
where the training environment does not accurately represent
the deployed environment. The standard approach addressing
this issue is to consider the model uncertainty [9]–[12] - the
variability and unpredictability in the environment’s transition
- and to focus on maximizing the agent’s worst-case perfor-
mance during training.

Modeling such complex training environments necessitates
an extension of the classical Markov Decision Process (MDP)
framework to robust MDPs, the foundation of which has been
extensively studied by [9], [13]–[15]. Solving robust MDPs
presents a significantly greater challenge than the standard
scenario, as the optimal policy may not be deterministic,
and solutions heavily depend on environment uncertainty [9].
There has been a surge in research focused on developing algo-
rithms that optimize for the worst-case performance, ensuring
theoretical soundness. [13] demonstrated the feasibility of
solving robust MDPs; however, their proposed value iteration
method requires prior knowledge of the worst-case transitions.
Subsequent studies have developed two common approaches to
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resolve this issue. One is the sample-based method that lever-
ages data from a nominal transition model [16]–[18]. These
approaches aim to learn robust policies without explicitly
computing worst-case scenarios. Another is the model-based
method that estimate the worst-case transition model during
the learning process [19], [20]. These techniques attempt to
solve the inner minimization problem of finding the worst-
case dynamics. Notably, recent work by Kumar et al. [21]
has shown that for certain uncertainty sets, the worst-case
transition model is a rank-one perturbation of the nominal
model, indicating that the worst-case transition model can
be directly learned from the nominal transition model. This
insight suggests that the two approaches above may be more
closely related than previously thought.

In this context, the policy gradient method emerges as
a promising approach for addressing the challenges posed
by robust MDPs due to their efficiency and ability to di-
rectly optimize decision-making policies. Many algorithms
are proposed with theoretical convergence guarantees, such
as Robust Policy Mirror Descent [16], which adapts mirror
descent to robust MDPs; Double-Loop Robust Policy Gradient
[19], which alternates between policy updates and worst-
case transition estimation; Robust Policy Iteration [22], which
extends classical policy iteration to the robust setting; and
Monotonic Robust Policy Optimization [23], which ensures
monotonic improvement under model discrepancies. Despite
these advances, existing work either lacks of a finite-sample
complexity analysis [23] or lacks of the monotonicity of
robust policy improvements [16], [19], [22], which presents
significant challenges remain in robust RL. The challenge
of establishing finite-sample complexity guarantees based on
the theoretically-guaranteed monotonicity of robust policy
improvements underscore the need for further research to
bridge the gap between theoretical guarantees and practical
applicability. Addressing these open problems requires in-
novative algorithmic approaches that can efficiently navigate
the complex landscape of robust MDPs while maintaining
computational tractability and theoretical soundness.

A. Contributions

Building upon these advancements, we introduce a novel
policy-based algorithm to address the challenges inherent in
solving robust MDPs. By leveraging the strengths of the
distributionally robust optimization (DRO) framework, we
reformulate the problem of solving robust MDPs as a bilevel
optimization problem. This innovative approach enables the
adaptation of existing bilevel optimization algorithms, such
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as [24], to effectively solve robust MDPs. Our contributions
include:

‚ We propose the Robust Conservative Policy Iteration
(RCPI) algorithm, which extends traditional conservative
policy iteration [25] by incorporating the DRO framework
to handle environmental uncertainties. Our algorithm
ensures monotonic policy improvement in the worst-
case scenario, akin to the guarantees of the original
conservative policy iteration approach.

‚ Under some mild assumptions, we demonstrate that
our proposed RCPI algorithm offers theoretical conver-
gence guarantees to an optimal policy for the worst-case
scenario. The iteration complexity of achieving the ϵ-
accuracy in the robust value function is Op 1

1´γ
1
ϵ2 q, and

the sample complexity is Opϵ´5q.
‚ We conduct experiments on synthetic environments to

validate our algorithm’s performance empirically. The
results indicate the RCPI algorithm’s superior ability to
find robust policies that perform well across a range of
environments, thereby significantly outperforming tradi-
tional methods in terms of resilience and reliability.

B. Related Work

a) Value-based approaches with model uncertainty: The
value-based method is also an attractive direction of a robust
RL algorithm. [10] designs the robust Q-learning algorithm
for a certain uncertainty model. To generalize it to a more
general setting, [26], [27] utilize the technique from the
distributionally-robust optimization (DRO) theory, which leads
to a simple but elegant design of robust Q-learning algorithm
for solving robust MDPs with a much more general uncertainty
set. Their developed technique of combining robust Q-learning
and DRO theory can potentially be generalized to the policy-
based method, which motivates us to design the RCPI method.

b) Policy-based approaches with model uncertainty:
[28] designs the policy gradient method for a specific un-
certainty model. [16] extends this method by considering the
robust mirror ascent on a more general uncertainty model; by
selecting appropriate Bregman divergence, this result demon-
strates the convergence guarantee of projected policy gradient
[29] and natural policy gradient [30]. The recent work [19]
presents the double-loop robust policy gradient method, which
adapts the project policy gradient method to the scenario of
robust MDPs; the update rule of the policy gradient relies
on estimating the worst-case transition probability, which
can be effectively solved using value-iteration and gradient-
based approaches. Extending this idea, we adopt a bilevel
optimization framework to solve the RCPI algorithm, which
provides a new perspective to analyze and understand robust
RL algorithms.

c) Distributionally Robust Optimization (DRO): The re-
cent development of DRO theory is one of the most crucial
components of our proposed RCPI algorithm. The DRO aims
to solve the optimization problem over a set of data distribution
(usually called the uncertainty set) instead of a single data
distribution [31]–[33]. The common approach to solve the
DRO problem is to treat the uncertainty set as a constraint of

the data distribution and then re-write it as the dual form [34].
Recently, [35] has extended this result to a general non-convex
objective function with a theoretical convergence guarantee.
The RL problem inherently contains dynamic and diverse
data distributions, which makes the DRO framework an ideal
choice to characterize such uncertainty.

II. PRELIMINARIES

In this section, we recap mathematical notations and con-
cepts used in this work.

A. Robust reinforcement learning

We mainly focus on the discounted infinite-horizon Markov
Decision Processes (MDP), which is defined as a five-tuple
pS,A, P, r, γq, where S and A denote finite state and action
spaces, respectively. The transition probability P ps1|s, aq rep-
resents the probability of transitioning from state s to state
s1 by taking action a. The reward function r : S Ñ r0, 1s

assigns rewards for each state. The discounted factor γ P p0, 1q

quantifies the diminishing value of future rewards.
Instead of considering a single transition probability P , we

are interested in resolving the impact of model uncertainty (or
environment shifting) that is ubiquitous in real-world applica-
tions. Let P0 be the nominal transition and ϕ be a divergent
function. Given a threshold c ą 0, we define Us,a :“ tus,a “

Pup¨|s, aq ´ P0p¨|s, aq : max
s,aPSˆA

ϕpP0p¨|s, aq, Pup¨|s, aq ď cu.

Then, the uncertainty set is defined as U “
Ś

s,a Us,a.
We note that by our definition of uncertainty set, the uncer-

tainty u and the transition probability Pu are interchangeable.
In this sense, we define the value function of the uncertainty
u as the value function of the transition probability Pu:

V πu psq :“ E
“

8
ÿ

t“0

γtrpstq | s0 “ s, Pu, π
‰

:“ Eτ |π,u

“

8
ÿ

t“0

γtrpstq | s0 “ s
‰

,

where we use “τ |π, u” to represent the trajectory generated by
Pu and π. The robust value function is the worst-case value
function over all uncertainties; that is

V πpsq :“ min
u
V πu psq.

Moreover, we denote the expectation of robust value function
with respect to its initial state distribution µ0 as ηpπq :“
Es„µ0V

πpsq. For simplicity, we assume µ0 is supported by a
singleton. Similarly, we also define the robust Q-function and
the robust advantage function as

Qπps, aq :“ Eτ |π,u

“

8
ÿ

t“0

γtrpstq | s0 “ s, a0 “ a
‰

;

Aπps, aq :“ Qπps, aq ´ V πpsq.
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B. Distributionally robust optimization

The main technique used in our work to develop the robust
RL algorithm is the distributionally robust optimization (DRO)
framework, which seeks to optimize an objective function
under the worst-case scenario from a set of possible probability
distributions. It considers the following optimization problem

max
πPΠ

min
uPU

Ex„urfpπ, xqs,

where π is the parameter we aim to optimize, U is the
uncertainty set, and fpπ, uq is the objective function, typically
representing the value function to be maximized.

The uncertainty set is usually represented as a soft con-
straint. For the uncertainty set U :“ tu : dψpu, u0q ď ϵu, our
aim turns to solve

max
πPΠ

min
uPU

rEx„urfpπ, xqs ` λdpu, u0qs ,

where u0 is called the nominal distribution and λ ą 0 is the
regularization coefficient. By [35], this unconstrained max-min
optimization problem can be equivalently written as

max
π,η

Ex„u0

„

λψ˚

ˆ

fpπ;xq ´ η

λ

˙

` η

ȷ

.

Solving this optimization problem has one advantage which
makes the DRO framework an ideal characterization for robust
RL: we only need to sample from the nominal distribution u0
to obtain a stochastic gradient.

III. THE ROBUST CONSERVATIVE POLICY ITERATION
ALGORITHM

In this section, we introduce the formulation of a robust
conservative policy iteration algorithm. This algorithm repre-
sents a bridge between the distributionally robust optimization
(DRO) and robust reinforcement learning.

A. Derive the robust conservative policy iteration

Updating the policy π to π1, it is crucial to quantify the
performance improvement under the worst-case scenario. This
requirement leads us to establish a robust policy improvement
lemma, described as follows:

Lemma 1. Let ηpπq and ηpπ1q be the expected robust value
function of π and π1, respectively. Then

ηpπ1q ě ηpπq ` min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq. (1)

Proof. See Lemma 4, Appendix A.

This lemma indicates that updating π to π1 has
a non-negative improvement, which suffices to require
ř

a π
1pa|sqAπps, aq ě 0. The classical approach considers the

deterministic policy π1psq “ argmaxaA
πps, aq, which im-

proves the policy at the state-action pair with a positive robust
advantage value and nonzero visitation probability ρπ1,upsq.
However, as pointed out by [36], it is usually hard to directly
optimize (1) since sampling from ρπ1,u would be hard. To
resolve this issue, we adopt the following local approximation

of η as used in the TRPO algorithm [36] and the original
conservative policy iteration algorithm [25]:

Lπpπ1q :“ ηpπq ` min
u

ÿ

s

ρπ,upsq
ÿ

a

π1pa|sqAπps, aq

“ ηpπq ` min
u
Eps,aq„ρπ,ubπ1Aπps, aq

“ ηpπq ` min
u
Eps,aq„ρπ,ubπ

π1pa|sq

πpa|sq
Aπps, aq.

In this approximation, we replace ρπ1,u with ρπ,u, which
ignores the change in visitation measure caused by the policy
update. The following theorem shows that this approximation
is generally accurate when two conditions are satisfied: (i)
the two policies π and π1 are sufficiently closed; (ii) the
corresponding worst-case transition probability of π and π1

(that is, u and u1) are sufficiently closed.

Theorem 1. Let ϵ “ maxs,a |Aπps, aq|, απ,π1 “

maxsDTV pπ, π1q, and βu,u1 “ maxs1,s,a |Pu ´ Pu1 |. Denote
the worst-case transition of π is upπq; that is, upπq “

argminu V
π
u ps0q. Then

ηpπ1q ´ Lπpπ1q ě ´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ.

Moreover, the equality holds if π1 “ π; that is,

ηpπq “ Lπpπq.

Proof. See Appendix B.

Here, απ,π1 “ maxsDTV pπ, π1q quantifies the total vari-
ation distance between policies π and π1 and and βu,u1 “

maxs1,s,a |Pu´Pu1 | measures the distance between their worst-
case transitions. When π “ π1, both distances are vanishing.
The theorem’s inequality establishes a lower bound for the gap
between the robust expected return ηpπ1q and its local approxi-
mation Lπpπ1q, decomposing into penalties for significant dis-
crepancies between two policies maxsDTV pπ, π1q and their
corresponding worst-case transitions βu,u1 “ maxs1,s,a |Pu ´

Pu1 |. Therefore, it is guaranteed to have a monotone policy
improvement if we define the policy iteration step as

π1 Ð argmax
π1

min
u
Eps,aq„ρπ,ubπ

”

Lπi
pπ1q

´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ
ı

.

where u and u1 are the worst-case uncertainty of π and π1,
respectively. This iteration formula turns the robust policy op-
timization problem into a distributionally robust optimization
(DRO) problem. We can re-write it into its dual-form [35]:

max
π1,η

Eps,aq„ρπ,0bπ

«

λψ˚

˜

1

λ

´π1pa|sq

πpa|sq
Aπps, aq

´
γ2

p1 ´ γq3

´

β2 ` 2αβ
¯



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 2, DECEMBER 2023 4

´

” 2γ

p1 ´ γq2
p2α2 ` αβq

ı

ϵ´ η
¯

¸

` η

ff

where λ ą 0 is the regularization coefficient. To address the
challenge of unknown worst-case uncertainty denoted as u1,
we adopt the bilevel optimization approach as below:

pUpperq max
π1,η

Eps,aq„ρπ,0bπ

«

λψ˚

˜

1

λ

´π1pa|sq

πpa|sq
Aπps, aq

´
γ2

p1 ´ γq3

´

β2 ` 2αβ
¯

´

” 2γ

p1 ´ γq2
p2α2 ` αβq

ı

ϵ´ η
¯

¸

` η

ff

, (2)

pLowerq u1 “ argmin
u

V π
1

u ps0q.

The lower-level optimization problem has been widely em-
ployed in the analysis of robust MDPs; moreover, [19] shows
that when the uncertainty set is convex, the lower-level prob-
lem is also convex and gives a gradient-based method to
solve this problem. For completeness, we also provide an
alternative proof for this statement in Theorem 4. Employing
this convexity, we can apply the primal-dual method given
by [24] to solve this bilevel optimization problem. For more
details, we re-formulate our problem into [24]’s framework
and derive the sample complexity in Section D. As a summary,
we obtain the following Algorithm 1.

Algorithm 1 Robust conservative policy iteration (RCPI)
algorithm

Initialize π0
loop

Compute all robust advantage values Aπips, aq

π Ð πi
Solve π1 from the constrained bilevel optimization prob-
lem (2)
πi`1 Ð π1

if ηpπi`1q ´ ηpπiq ă ϵ then
return πi

end if
i Ð i` 1

end loop

B. Properties of the proposed algorithm

In this subsection, we discuss some main properties of our
derived algorithm RCPI.

Theorem 2. Let tπiui“1,2,... be the sequence policies gener-
ated by Algorithm 1.

(i) tηpπiqui“1,2,... is a non-decreasing sequence.
(ii) Let the algorithm terminate if ηpπi`1q´ηpπiq ă ϵ. Then

the output policy π :“ πi and π1 :“ πi`1 satisfy

ηpπ˚q ´ ηpπq ă Cπ1ϵ` E ,

where Cπ1 and E are non-negative constants depending
on π, π1, and π˚.

(iii) Suppose all policies are restricted to Πδ “ tδU ` p1 ´

δqπ : π P ∆u. Under the same termination condition as
(ii), the output policy of Algorithm 1 requires at most
Op 1

1´γ
1
ϵ q iterations to achieve ϵ{δ-accuracy.

Proof. See Appendix C.

The first term (i) implies the convergence of Algo-
rithm 1. Since the sequence of expected robust value func-
tions tηpπiqui“1,2,... associated with the policy dynamics
tπiui“1,2,... is non-decreasing, the sequence tηpπiqui“1,2,...

must be convergent, given that all value functions are bounded
above by 1

1´γ . Nonetheless, this monotonicity alone does
not ensure that limiÑ8 ηpπiq equals ηpπ˚q. To address this,
item (ii) examines the algorithm’s behavior upon termination,
describing the discrepancy between the output and optimal
policies. Meanwhile, item (iii) provides convergence guaran-
tees and iteration complexity under some mild assumptions.

Discussions on the assumptions: In item (iii), we assume
all policies are restricted to Πδ “ tδU ` p1 ´ δqπ : π P ∆u;
it can be replaced with Πϵ so the optimal policy within
this constraint will be an ϵ-approximation of the optimal
policy. Then the termination condition should be adjusted to
ηpπi`1q´ηpπiq ă ϵ2, ensuring that the output policy π attains
ϵ-accuracy relative to the optimal policy, with a final iteration
complexity of Op 1

1´γ
1
ϵ2 q.

Total sample complexity: While the proposition primarily
addresses iteration complexity, it is also crucial to consider
sample complexity, i.e., the amount of data required to
achieve ϵ-accuracy. Utilizing the bilevel optimization algo-
rithm Proximal-PDBO [24] to solve (2), we find that ap-
proximately Opϵ´3q steps are needed to reach ϵ2 accuracy.
It implies a total sample complexity of Opϵ´5q.

IV. EXPERIMENTS

To validate the effectiveness of our proposed RCPI algo-
rithm (Algorithm 1), we conducted experiments using the
Frozen Lake environment [37]. This environment provides
a testbed for our robust RL algorithm due to its inherent
uncertainties and potential for catastrophic failures (falling into
holes). The Frozen Lake environment consists of a 4ˆ 4 grid
where the agent must navigate from the start state (left-top cor-
ner) to a goal state (right-bottom corner) while avoiding holes.
The standard environment features slippery ice, introducing
stochasticity. We further modified this setup to incorporate
additional uncertainty, simulating varying ice conditions that
affect the probability of slipping. Figure 1 illustrates the map
configuration.
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Fig. 1. The map configuration of the Frozen Lake environment [37]. The
agent starts in the top-left corner and aims to reach the bottom-right corner. In
the nominal model, the environment is deterministic: when the agent chooses
a direction, it moves one step in that direction with probability 1. In the
uncertain environment, the agent has a probability p of slipping an additional
step.

We adapted the episodic environment to an infinite-horizon
continuous learning setting by resetting the agent to the start
position upon reaching the goal or falling into a hole. When the
agent arrives the goal, it receives the reward 1; when the agent
falls into a hole, it recieves the reward ´1. Our experiments
aimed to evaluate the performance of our proposed RCPI
algorithm (Algorithm 1) in the worst-case environment. More
explicitly, we set the probability of being slippery to be
p “ 0.2 and use KL-divergence to define the uncertainty set.
Figure 2 presents the episodic rewards for both the non-robust
policy iteration and our proposed RCPI algorithm.

Fig. 2. Comparison of episodic rewards. Left: Performance in the nominal
environment. Right: Performance in the worst-case environment.

The left panel of Figure 2 demonstrates that our RCPI
algorithm performs comparably to the non-robust version in
the nominal environment. More importantly, the right panel
illustrates that the policy learned by RCPI exhibits significantly
improved performance in the worst-case environment. These
results underscore the robustness and effectiveness of our
proposed approach in handling environmental uncertainties.

V. CONCLUSION

In this paper, we introduced the RCPI algorithm, a novel
approach to solving robust MDPs that combines conservative
policy iteration with distributionally robust optimization. Our
key contributions include developing RCPI with guaranteed
monotonic policy improvement in worst-case scenarios, pro-
viding theoretical convergence guarantees with an iteration
complexity of Op 1

1´γ
1
ϵ2 q and sample complexity of Opϵ´5q,

and empirically validating its performance in the Frozen
Lake environment. These results demonstrate RCPI’s abil-
ity to learn policies robust to environmental uncertainties,
outperforming non-robust methods in worst-case scenarios.
Our work bridges the gap between theoretical guarantees and
practical applicability in uncertain environments, opening new
avenues for robust RL algorithm development. Future research
directions include extending RCPI to continuous state and
action spaces, integrating function approximation techniques,
exploring multi-agent settings, and conducting more extensive
empirical studies. The RCPI algorithm represents a signifi-
cant advancement in robust reinforcement learning, offering
a promising approach for developing reliable autonomous
systems capable of operating in complex, real-world scenarios
with inherent uncertainties.
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APPENDIX A
USEFUL LEMMAS

In this section, we provide some necessary lemmas used to
prove our main results.

Lemma 2 (Robust Bellman equation). The robust state-action
value function Qπ and the robust state value function V π

satisfy

Qπps, aq “ rpsq ` γmin
uPU

ÿ

s1PS

Pups1|s, aqV πps1q (3)

for all ps, aq P S ˆA.

Proof. See Eq.(2.5) in [16].

Lemma 3 (Robust policy improvement lemma). Let ηpπq

and ηpπ1q be the expected robust value function of π and π1,
respectively. Then

ηpπ1q ´ ηpπq

“min
uPU

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq ` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

.

(4)

Proof. The robust expected value function ηpπq is defined as
ηpπq “ Es0„µ0V

πps0q; therefore, the improvement from π to
π1 is given by

ηpπ1q ´ ηpπq

“ Es0„µ0V
π1

ps0q ´ Es0„µ0V
πps0q

“ ´Es0„µ0V
πps0q ` Es0„µ0 min

u
Eτ |π1,u

”

8
ÿ

t“0

γtrpstq
ı

“ Es0„µ0

«

´ V πps0q ` min
u
Eτ |π1,u

”

8
ÿ

t“0

γtrpstq
ı

ff
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Without loss of generality, we fix a starting state s0. Then
ηpπq “ V πps0q can be considered as a real number. Shifting
a constant doesn’t affect the minimization, so we get

ηpπ1q ´ ηpπq

“ min
u
Eτ |π1,u

«

´ V πps0q `

”

8
ÿ

t“0

γtrpstq
ı

ff

“ min
u
Eτ |π1,u

«

8
ÿ

t“0

γt
´

rpstq ` γV πpst`1q ´ V πpstq
¯

ff

“ min
u
Eτ |π1,u

«

8
ÿ

t“0

γt
´

rpstq ` γEst`1„Pu,π1 p¨|stqV
πpst`1q ´ V πpstq

¯

ff

.

Define the shortcut notation

Aupsq :“ rpsq ` γEs1„Pu,π1 p¨|sqV
πps1q ´ V πpsq

“ rpsq ` γ
ÿ

s1PS

Pu,π1 ps1|sqV πps1q ´ V πpsq

“ rpsq ` γ
ÿ

s1PS

ÿ

aPA

π1pa|sqPups1|s, aqV πps1q ´ V πpsq

“
ÿ

aPA

π1pa|sq
”

rpsq ` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

Then we obtain

ηpπ1q “ ηpπq ` min
u
Eτ |π1,u

«

8
ÿ

t“0

γtAupstq

ff

“ ηpπq ` min
u

8
ÿ

t“0

ÿ

s

Pupst “ s|π1qγtAupsq

“ ηpπq ` min
u

ÿ

s

ρπ1,upsqAupsq.

We expand the shortcut notation Aupsq and get the following
policy improvement equality:

ηpπ1q “ ηpπq ` min
uPU

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

.

Then the proof is completed.

Lemma 4. Let ηpπq and ηpπ1q be the expected robust value
function of π and π1, respectively.

(i) Let Aπps, aq :“ Qπps, aq ´ V πpsq be the robust advan-
tage function. Then

ηpπ1q ´ ηpπq ě min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq.

(5)

(ii) Moreover, if the worst-case uncertainty of the policy π
is achieved at u˚, then

ηpπ1q ´ ηpπq ď
`

max
s
ρπ1,u˚ psq

˘

ÿ

s

ÿ

a

π1pa|sqAπps, aq.

(6)

Proof. (i) First, we derive the lower bound of the right-hand
side of (4):

ηpπ1q “ηpπq ` min
uPU

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

ěηpπq ` min
uPU

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq min
uPUs,a

”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

.

By Lemma 2,

min
uPUs,a

”

rpsq ` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

“Qπps, aq ´ V πpsq.

This recovers the desired result:

ηpπ1q ě ηpπq ` min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq.

(ii) Now we derive the upper bound of the right-hand side
of (4). Let the worst-case uncertainty of the policy π is
achieved at u˚. Then

ηpπ1q “ ηpπq ` min
uPU

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

ď ηpπq `
ÿ

s

ρπ1,u˚ psq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pu˚ ps1|s, aqV πps1q ´ V πpsq
ı

piq
“ ηpπq `

ÿ

s

ρπ1,u˚ psq
ÿ

a

π1pa|sqAπps, aq

“ ηpπq ` max
s
ρπ1,u˚ psq

ÿ

s

ÿ

a

π1pa|sqAπps, aq.

where (i) applies the robust Bellman equation (Lemma
2).

Lemma 5. Let ϵ “ maxs,a |Aπps, aq|, απ,π1 “

maxsDTV pπ, π1q, and βu,u1 “ maxs1,s,a |Pups1|s, aq ´

Pu1 ps1|s, aq|. Then for any policy π1 and any uncertainty
u1 P U ,

›

›

›
γV πupπq∆

u1,π1

upπq,π

›

›

›

8
ď
γβu,u1

1 ´ γ
` 2απ,π1ϵ.

Proof. The s-th item of the vector pγV πupπq
∆u1,π1

upπq,πq is decom-
posed to the distance between two uncertainty u1 and upπq and
the distance between two policy π and π1 as the following:

|pγV πupπq∆
u1,π1

upπq,πqs|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a

”

γPu1 ps1|s, aqπ1pa|sqV πps1q ´ γPupπqps1|s, aqπpa|sqV πps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a

”

γ
“

Pu1 ps1|s, aq ´ Pupπqps1|s, aq ` Pupπqps1|s, aq
‰

π1pa|sqV πps1q

´ γPupπqps1|s, aqπpa|sqV πps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

s1,a

”

γ
“

Pu1 ps1|s, aq ´ Pupπqps1|s, aq
‰

π1pa|sqV πps1q

ı
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`
ÿ

s1,a

”

γPupπqps1|s, aqπ1pa|sqV πps1q ´ γPupπqps1|s, aqπpa|sqV πps1q

ı
ˇ

ˇ

ˇ

ď
γβu,u1

1 ´ γ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a

”

γPupπqps1|s, aqπ1pa|sqV πps1q

´ γPupπqps1|s, aqπpa|sqV πps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

We bound the second term
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a

”

γPupπqps1|s, aqπ1pa|sqV πps1q ´ γPupπqps1|s, aqπpa|sqV πps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

by applying the robust Bellman equation Qπps, aq “ rpsq `

γ
ř

s1 Pupπqps1|s, aqV πps1q.
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1,a

”

γPupπqps1|s, aqπ1pa|sqV πps1q

´ γPupπqps1|s, aqπpa|sqV πps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

`

π1pa|sq ´ πpa|sq
˘

rQπps, aq ´ rpsqs

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

`

π1pa|sq ´ πpa|sq
˘

Aπps, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

a

ˇ

ˇπ1pa|sq ´ πpa|sq
ˇ

ˇmax
a

Aπps, aq

ď2απ,π1ϵ.

Plugging it back, we get

|pγV πupπq∆
u1,π1

upπq,πqs| ď
γβu,u1

1 ´ γ
` 2απ,π1ϵ.

It completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Theorem 3. Let ϵ “ maxs,a |Aπps, aq|, απ,π1 “

maxsDTV pπ, π1q, and βu,u1 “ maxs1,s,a |Pu ´ Pu1 |. Denote
the worst-case transition of π is upπq; that is, upπq “

argminu V
π
u ps0q. Then

ηpπ1q ´ Lπpπ1q ě ´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ.

Moreover, the equality holds if π1 “ π; that is,

ηpπq “ Lπpπq.

Proof. Recall that Pu,πps1|sq represents the probability of
moving from the state s to the new state s1 over the policy π.
It can be written as a S ˆ S matrix. In this sense, we define
the matrix Gu,π “ p1´γPu,πq´1 for any given u and π. Also,
we define ∆u,π

u1,π1 “ Pu,π ´ Pu1,π1 for any given u1, u, π1, π.
Our goal is to lower bound ηpπ1q ´Lπpπ1q. We start from the
following decomposition:

ηpπ1q ´ Lπpπ1q “ ηpπ1q ´ ηpπq ` ηpπq ´ Lπpπ1q

“

´

ηpπ1q ´ ηpπq

¯

`

´

Lπpπq ´ Lπpπ1q

¯

,

where the second equality is implied by the definition of Lπ .
a) Bound ηpπ1q´ηpπq: The proof of this part is adapted

from the perturbation theory proof of [36]. Recall that the
worst-case expected value function ηpπq “ rGupπq,πρ0 “

rρupπq,π and ηpπ1q “ rGupπ1q,π1ρ0 “ rρupπ1q,π1 .

G´1
upπq,π ´G´1

upπ1q,π1 “ γpPupπ1q,π1 ´ Pupπq,πq

Gupπq,π

´

G´1
upπq,π´G´1

upπ1q,π1

¯

Gupπ1q,π1

“ γGupπq,π

´

Pupπ1q,π1 ´ Pupπq,π

¯

Gupπ1q,π1

Gupπ1q,π1 ´Gupπq,π “ γGupπq,π

´

Pupπ1q,π1 ´ Pupπq,π

¯

Gupπ1q,π1 ,

where we define

∆ :“ ∆
upπ1

q,π1

upπq,π “ Pupπ1q,π1 ´ Pupπq,π.

Then we obtain Eq.(47) of the TRPO paper [36]:

Gupπ1q,π1 “ Gupπq,π ` γGupπq,π∆Gupπ1q,π1 .

Also Eq.(48):

Gupπ1q,π1 “ Gupπq,π ` γGupπq,π∆
”

Gupπq,π ` γGupπq,π∆Gupπ1q,π1

ı

“ Gupπq,π ` γGupπq,π∆Gupπq,π

` γ2Gupπq,π∆Gupπq,π∆Gupπ1q,π1 .

This leads to

ηpπ1q ´ ηpπq “ r
´

Gupπ1q,π1 ´Gupπq,π

¯

ρ0

“ r
´

γGupπq,π∆Gupπq,π

` γ2Gu,π∆Gupπq,π∆Gupπ1q,π1

¯

ρ0

“ γrGupπq,π∆Gupπq,πρ0

` γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0,

Also, the first term rGupπq,π∆Gupπq,πρ0 “ V π∆ρπ,upπq.
b) Upper bound Lπpπ1q ´ Lπpπq: We need an upper

bound for Lπpπ1q´Lπpπq that contains the term V π∆ρπ,upπq.

Lπpπ1q ´ Lπpπq “

”

ηpπq ` min
u

ÿ

s

ρπ,upsq
ÿ

a

π1pa|sqAπps, aq

ı

´

”

ηpπq ` min
u

ÿ

s

ρπ,upsq
ÿ

a

πpa|sqAπps, aq

ı

ď
ÿ

s

ρπ,upπqpsq
ÿ

a

π1pa|sqAπps, aq

´
ÿ

s

ρπ,upπqpsq
ÿ

a

πpa|sqAπps, aq.

We will investigate each term. By Proposition 2.2 [16],
ÿ

s

ρπ,upπqpsq
ÿ

a

π1pa|sqAπps, aq

“
ÿ

s

ρπ,upπqpsq
ÿ

a

π1pa|sq
”

rpsq ` min
u

ÿ

s1

Pups1|s, aqV πps1q ´ V πpsq
ı

ď
ÿ

s

ρπ,upπqpsq
ÿ

a

π1pa|sq
”

rpsq `
ÿ

s1

Pupπ1qps1|s, aqV πps1q ´ V πpsq
ı

ÿ

s

ρπ,upπqpsq
ÿ

a

πpa|sqAπps, aq
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“
ÿ

s

ρπ,upπqpsq
ÿ

a

πpa|sq
”

rpsq `
ÿ

s1

Pupπqps1|s, aqV πps1q ´ V πpsq
ı

.

Then the gap between Lπpπ1q and Lπpπq becomes

Lπpπ1q ´ Lπpπq

ď
ÿ

s

ρπ,upπqpsq
ÿ

a

π1pa|sq
ÿ

s1

Pupπ1qps1|s, aqV πps1q

´
ÿ

s

ρπ,upπqpsq
ÿ

a

πpa|sq
ÿ

s1

Pupπqps1|s, aqV πps1q

“
ÿ

s

ρπ,upπqpsq
ÿ

a

ÿ

s1

”

π1pa|sqPupπ1qps1|s, aq

´ πpa|sqPupπqps1|s, aq

ı

V πps1q

“
ÿ

s

ρπ,upπqpsq
ÿ

s1

”

Pupπ1q,π1 ps1|sq ´ Pupπq,πps1|sq
ı

V πps1q

“ V π∆ρπ,upπq.

Now we are back to the original decomposition

ηpπ1q ´ Lπpπ1q “ ηpπ1q ´ ηpπq ` ηpπq ´ Lπpπ1q

“

´

ηpπ1q ´ ηpπq

¯

`

´

Lπpπq ´ Lπpπ1q

¯

.

We combine two bounds together.

ηpπ1q ´ ηpπq “V π∆ρπ,upπq

` γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0,

Lπpπ1q ´ Lπpπq ď V π∆ρπ,upπq.

Then

ηpπ1q ´ Lπpπ1q ě γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0.

Lastly, we decomposite ∆ :“ ∆
upπ1

q,π1

upπq,π “ Pupπ1q,π1 ´ Pupπq,π

as

∆ “ Pupπ1q,π1 ´ Pupπq,π1 ` Pupπq,π1 ´ Pupπq,π

“ ∆
upπ1

q,π1

upπq,π1 ` ∆
upπq,π1

upπq,π .

We have

γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0

“ γ2rGupπq,π

”

∆
upπ1

q,π1

upπq,π1 ` ∆
upπq,π1

upπq,π

ı

Gupπq,π

ˆ

”

∆
upπ1

q,π1

upπq,π1 ` ∆
upπq,π1

upπq,π

ı

Gupπ1q,π1ρ0

Now it suffices to bound
ˇ

ˇγ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0
ˇ

ˇ.
If we have the bound

ˇ

ˇγ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0
ˇ

ˇ ď E

then we automatically obtain the lower bound

γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0 ě ´E .

By the Hölder’s inequality,
ˇ

ˇγ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0
ˇ

ˇ

ď
›

›γ2rGupπq,π∆
›

›

8

›

›Gupπq,π∆Gupπ1q,π1ρ0
›

›

1

To bound the first term
›

›γ2rGupπq,π∆
›

›

8
“

γ
›

›

›
γV πupπq

∆
upπ1

q,π1

upπq,π

›

›

›

8
, we let u1 “ upπ1q. Then we directly

apply Lemma 5 and get
›

›

›
γV πupπq∆

u1,π1

upπq,π

›

›

›

8
ď
γβu,u1

1 ´ γ
` 2απ,π1ϵ.

The second term can be bounded as
›

›Gupπq,π∆Gupπ1q,π1ρ0
›

›

1
ď

›

›Gupπq,π

›

›

1
}∆}1

›

›Gupπ1q,π1

›

›

1
}ρ0}1

“
1

1 ´ γ
ˆ }∆}1 ˆ

1

1 ´ γ
ˆ 1

“
}∆}1

p1 ´ γq2
ď
βu,u1 ` 2απ,π1

p1 ´ γq2
.

In summary, we obtain
ˇ

ˇγ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0
ˇ

ˇ

ď γ ˆ

ˆ

γβu,u1

1 ´ γ
` 2απ,π1ϵ

˙

ˆ
βu,u1 ` 2απ,π1

p1 ´ γq2
.

That is,

γ2rGupπq,π∆Gupπq,π∆Gupπ1q,π1ρ0

ě ´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ.

Lastly, we give the equality condition. When π1 is set to π,
Lπpπq exactly recovers ηpπq since

Lπpπq “ ηpπq ` min
u

ÿ

s

ρπ,upsq
ÿ

a

πpa|sqAπps, aq

“ ηpπq ` min
u

ÿ

s

ρπ,upsq
ÿ

a

πpa|sq
“

Qπps, aq ´ V πpsq
‰

“ ηpπq,

where the last equality holds because
ř

a πpa|sqQπps, aq “

V πpsq.

APPENDIX C
PROOF OF THEOREM 2

In this section, we provide the proof for Theorem 2. Here
we give its full statement:

Proposition 1. Let tπiui“1,2,... be the sequence policies
generated by Algorithm 1.

(i) tηpπiqui“1,2,... is a non-decreasing sequence.
(ii) Let the algorithm terminate if ηpπi`1q´ηpπiq ă ϵ. Then

the output policy π :“ πi and π1 :“ πi`1 satisfy

ηpπ˚q ´ ηpπq ă Cπ1ϵ` E ,

where Cπ1 :“ minumins ρπ1,upsq min
s,a:

π˚
pa|sq‰0

π1
pa|sq‰0

t
π1

pa|sq

π˚pa|sq
, 1u

and E :“
ř

π˚
pa|sq‰0

π1
pa|sq“0

`

π1pa|sq ´ π˚pa|sq
˘

Aπps, aq.

(iii) Suppose all policies are restricted to Πδ “ tδU ` p1 ´

δqπ : π P ∆u. Under the same termination condition as
(ii), the output policy of Algorithm 1 requires at most
Op 1

1´γ
1
ϵ q iterations to achieve ϵ{δ-accuracy.
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Proof. (i) First, we recall that Theorem 3 gives

ηpπ1q ´ Lπpπ1q ě ´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ. (7)

This result leads to our objective function in Algorithm 1:

Mipπ
1q :“ Lπi

pπ1q ´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ.

We can further show the convergence of this proposed algo-
rithm by adapting the standard argument of the minorization-
maximization (MM) algorithm. By (7) and the above definition
of Mi,

ηpπi`1q ě Mipπi`1q.

Also, when π “ πi, the gap between ηpπq and Lπpπq is 0 due
to the equality condition given in Theorem 3.

ηpπiq “ Mipπiq.

Then,
ηpπi`1q ´ ηpπiq ě Mipπi`1q ´Mipπiq.

It leads to the policy iteration step in Algorithm 1. We need
to solve

πi`1 “ argmax
“

Mipπi`1q ´Mipπiq
‰

. (8)

The maximization step guarantees tηpπiqui“1,2,... is a non-
decreasing sequence; moreover, from the theory of MM algo-
rithms, ηpπiq converges to ηpπq for some π.

(ii) We let the algorithm terminates if ηpπi`1q ´ ηpπiq ă ϵ.
Then the algorithm outputs the policy π “ πi and we set
π1 “ πi`1. By the termination condition ηpπi`1q ´ηpπiq ă ϵ,
we get from Lemma 3,

min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

ă ϵ.

That is,

ϵ ą ηpπ1q ´ ηpπq

“ min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq
”

rpsq

` γ
ÿ

s1PS

Pups1|s, aqV πps1q ´ V πpsq
ı

piq
ě min

u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq.

where (i) is by Lemma 4. We further decompose this term:

min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq

“min
u

ÿ

s

ρπ1,upsq

«

ÿ

π˚
pa|sq‰0

π1
pa|sq‰0

π1pa|sq

π˚pa|sq
π˚pa|sqAπps, aq

`
ÿ

π˚pa|sq“0

π˚pa|sqAπps, aq `
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π1pa|sqAπps, aq

ff

.

Let Cπ1,1 “ min
s,
π˚

pa|sq‰0
π1

pa|sq‰0

π1
pa|sq

π˚pa|sq
and Cπ1,2 “ 1. Then we

obtain

min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq

ďmin
u

ÿ

s

ρπ1,upsq

«

Cπ1,1

ÿ

π˚
pa|sq‰0

π1
pa|sq‰0

π˚pa|sqAπps, aq

` Cπ1,2

´

ÿ

π˚pa|sq“0

π˚pa|sqAπps, aq

`
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π˚pa|sqAπps, aq

¯

´
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π˚pa|sqAπps, aq `
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π1pa|sqAπps, aq

ff

.

We denote the last two terms as

E :“ ´
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π˚pa|sqAπps, aq `
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π1pa|sqAπps, aq

as an error term which indicates the discrepancy between π1

and π˚ on actions that are not covered by π1. We note that
when the policy during the policy iteration algorithm keeps
sufficient exploration ability, there is no uncovered actions; in
this case, the error term is exactly zero. We get

min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq

ďmin
u

ÿ

s

ρπ1,upsq

«

Cπ1,1

ÿ

π˚
pa|sq‰0

π1
pa|sq‰0

π˚pa|sqAπps, aq

` Cπ1,2

´

ÿ

π˚pa|sq“0

π˚pa|sqAπps, aq

`
ÿ

π˚
pa|sq‰0

π1
pa|sq“0

π˚pa|sqAπps, aq

¯

` E .

Then we have:

min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq

“ min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq

π˚pa|sq
π˚pa|sqAπps, aq

ą Cπ1 rηpπ˚q ´ ηpπqs,

where Cπ1 :“ minumins ρπ1,upsqmintCπ1,1, Cπ1,2u. In sum-
mary, we obtain,

ϵ ą min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sqAπps, aq

ě min
u

ÿ

s

ρπ1,upsq
ÿ

a

π1pa|sq

π˚pa|sq
π˚pa|sqAπps, aq ` E
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ą Cπ1 rηpπ˚q ´ ηpπqs ` E .

Then the proof is completed.

APPENDIX D
SOLVING THE BILEVEL OPTIMIZATION PROBLEM

In this section, we describe how to solve the bilevel op-
timization problem (2) given in our robust policy iteration
by using existing techniques from Distributionally Robust
Optimization (DRO) and Bilevel Optimization Algorithms.
First, we recap the definition of the uncertainty set; in our
work, we mainly consider the ps, aq-rectangular uncertainty
set defined as

Us,a :“tup¨|s, aq :“ P p¨|s, aq ´ P0p¨|s, aqq

| ϕpP p¨|s, aq, P0p¨|s, aqq ď cu

and
U :“

ą

ps,aqPSˆA

Us,a.

The robust conservative policy iteration is given by solving
the following DRO problem:

max
π1

min
uPU

Eps,aq„ρπ,ubπ

«

Lπipπ
1q (9)

´
γ2

p1 ´ γq3

´

β2
u,u1 ` 2απ,π1βu,u1

¯

(10)

´

” 2γ

p1 ´ γq2
p2α2

π,π1 ` απ,π1βu,u1 q

ı

ϵ

ff

. (11)

We need to re-written it as the form of bilevel optimization
problem (2) by applying existing DRO analysis from [35]:

pUpperq max
π1,η

Eps,aq„ρπ,0bπ

«

λψ˚

˜

1

λ

´π1pa|sq

πpa|sq
Aπps, aq

´
γ2

p1 ´ γq3

´

β2 ` 2αβ
¯

´

” 2γ

p1 ´ γq2
p2α2 ` αβq

ı

ϵ´ η
¯

¸

` η

ff

,

pLowerq u1 “ argmin
u

V π
1

u ps0q.

Assuming we are using the stochastic Proximal-PDBO algo-
rithm given in [24] to solve this bilevel optimization problem,
the sample complexity of the robust conservative policy itera-
tion (Algorithm 1) is given as ϵ´1.5ˆϵ´1 “ ϵ´2.5, where ϵ´1.5

is the complexity of solving the bilevel optimization problem
(2) given in Corollary 2, [24] and ϵ´1 is the complexity of the
policy iteration given in Theorem 3.

There are still two components that we aim to clarify in
this section: (1) To directly apply the algorithm given in
[24], we need to justify that the lower-level optimization is
a convex optimization problem, and (2) to re-write the max-
min optimization problem (9) into its duel form by applying
[35], we need to construct the corresponding uncertainty set
for the visitation measure.

A. Convexity of the lower-level optimization problem

First, we describe the convexity of the lower-level prob-
lem in (2). In general, the lower-level optimization problem
cannot by strongly convex since there possibly exist multiple
transitions with the same worst-case value function. Though
this property has been pointed out by [19], we provide an
alternative proof for completeness.

Theorem 4 (Convexity of Lower-Level Problem). Let V πu be
the value function for the given uncertainty u P U and the
policy π. Suppose that the initial state is fixed at s0. Then for
every policy π, u ÞÑ V πu ps0q is convex over U .

Proof. To establish this statement, we first consider that the
constraint of the lower-level problem is based on a convex
and compact uncertainty set U . There is a bijection mapping
from uncertainty u to transition probability Pu, given as
Pup¨|s, aq “ P0p¨|s, aq`up¨|s, aq, which is linear so preserves
convexity. Now, it suffices to consider the convexity over the
set of transition probability. The objective function of the
problem is expressed as the composition of two mappings,
f : X ÞÑ X´1 and g : X ÞÑ 1 ´ γX . Since f : X ÞÑ X´1

is convex by [38] and g : X ÞÑ 1 ´ γX is linear; the
composition f ˝ g would also be convex, as the composition
of convex functions preserves convexity. Therefore, given that
the convexity of f is established, it follows that the objective
function Pu ÞÑ rp1 ´ γPuq´1ρ0 is convex in Pu, thereby
concluding that u ÞÑ V πu ps0q is convex over U .

B. Connecting the uncertainty set of transitions to visitation
measures

We recall the definition of the uncertainty set U , which is
the ps, aq-rectangular uncertainty set induced by ϕ-divergence;
that is, for a fixed nominal transition P0 and a constant c ą 0,
the uncertainty set U is defined as

U :“
ą

s,aPSˆA

Us,a,

where Us,a :“ tup¨|s, aq :“ P p¨|s, aq ´ P0p¨|s, aqq :
ϕpP p¨|s, aq, P0p¨|s, aqq ď cu. Then we show that there exists
a corresponding uncertainty set of the nominal visitation
measure ρ0 induced by a ψ-divergence. Then, to solve the
DRO problem (9), it suffices to consider the uncertainty set of
visitation measure

tρ : ψpρ, ρ0q ď c1u

for the upper-level problem in (2). This leads to the dual-form
of DRO problem:

max
π1,η

Eps,aq„ρπ,0bπ

«

λψ˚

˜

1

λ

´π1pa|sq

πpa|sq
Aπps, aq

´
γ2

p1 ´ γq3

´

β2 ` 2αβ
¯

´

” 2γ

p1 ´ γq2
p2α2 ` αβq

ı

ϵ´ η
¯

¸

` η

ff

.

To build the connection between tρ : ψpρ, ρ0q ď c1u and the
original uncertainty set U , we consider the mapping described
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as follows. When the policy π is given, each uncertainty u P

U corresponds to an occupancy measure ρu. We define this
mapping:

Λπ : u ÞÑ ρu.

More explicitly, let ts0, s1, . . . u be the trajectory generated by
the policy π and the uncertainty u. Then

Λπpuqps, aq :“
8
ÿ

t“0

γtπpa|sqPupst “ s|πq.

Note that the mapping Λπ is not an injection since for two
different u and u1, it is possible that their visitation measures
are the same; that is, Λπpuq “ Λπpu1q. We consider the
following construction (P is the nominal transition used to
define the original uncertainty set):

‚ ΛπpUq :“ tΛπpuq : u P Uu.
‚ Uπpδq “ tρ : dϕpρ}ΛπpPqq ď δu.

Uπpδq is the desired uncertainty set since we can directly
apply the optimization paper. Then we can prove that the
new uncertainty set over the visitation measure has the desired
property:

Proposition 2. The distributionally robust optimization (DRO)
problem over U ,

min
θPΘ

max
uPU

Eξ„ρπ,u
rfpθ; ξqs,

is equivalent to the Λπ-induced DRO problem

min
θPΘ

max
vPΛπpUq

Eξ„vrfpθ; ξqs.

That is, if u˚ :“ argmaxuPU Eξ„ρπ,u
rfpθ; ξqs, then

v˚ :“ argmax
vPΛπpUq

Eξ„vrfpθ; ξqs “ Λπpu˚q.

Conversely, given v˚ :“ argmaxvPΛπpUq Eξ„vrfpθ; ξqs, for
any u P Λ´1

π pv˚q,

Eξ„ρπ,urfpθ; ξqs “ max
uPU

Eξ„ρπ,urfpθ; ξqs.

Proof. It suffices to consider the change of variable.

max
uPU

Eξ„ρπ,u
rfpθ; ξqs “ max

uPU

ż

fpθ; ξqdρπ,upξq

piq
“ max

ρπ,uPΛπpUq

ż

fpθ; ξqdρπ,upξq

“ max
vPΛπpUq

ż

fpθ; ξqdvpξq

“ max
vPΛπpUq

Eξ„vfpθ; ξq.

Here, we replace u with Λπpuq and the constraint U is changed
to its image ΛπpUq in the step (i).

However, the uncertainty set ΛπpUq may not have the
desired structure (e.g. convexity). It is much preferred to
consider the uncertainty set of visitation measure induced by
some divergence ψ; that is

tρ : ψpρ, ρ0q ď c1u,

where ρ0 is the visitation measure corresponding to the
nominal transition P0. In the next theorem, we show that

there exists such corresponding uncertainty set of the nominal
visitation measure ρ0 induced by the ψ-divergence shares the
same worst-case uncertainty with the ΛπpUq.

Theorem 5. Assume the mapping δ ÞÑ

minρPUπpδq Ex„ρrfpπ;xqs is uniformly continuous in δ.
Then there exists δ‹ such that

min
ρPUπpδ‹q

Ex„ρrfpπ;xqs “ min
ρPΛπpUq

Ex„ρrfpπ;xqs;

that is, solving the robust problem over the extended un-
certainty set Uπpδ‹q is exactly same as the original robust
problem.

Proof. Let Fπpδq “ minρPUπpδq Ex„ρrfpπ;xqs; it is a contin-
uous function by our assumption. Define

τ :“ min
ρPΛπpUq

Ex„ρrfpπ;xqs.

Then fp0q ě τ and there exists δ such that fpδq ď τ . There
must exist δ‹ such that fpδ‹q “ τ by the continuity of f .
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