Notes on Actuarial Statistics

September 2, 2019

Outline

(1) Survival Model

(2) Life Table

Actuarial Notations

Notations:

- (x) or x : a life aged x
- T_{x} : the future lifetime of x
- $F_{x}(t)$: the distribution of T_{x}; the probability of dying at age $x+t$
- $S_{x}(t)$: the probability of surviving at age $x+t$

Relation:

$$
S_{x}(t)=1-F_{x}(t)
$$

Result 2.4

The probability that (x) survives to at least $x+t+u$ is equal to the probability of surviving to $x+t$ multiplied by the probability of $x+t$ surviving to $x+t+u$:

$$
S_{x}(t+u)=S_{x}(t) \cdot S_{x+t}(u)
$$

Actuarial notations:

- ${ }_{t} q_{x}: F_{x}(t)$; the probability of dying at age $x+t$
- ${ }_{t} p_{x}$: $S_{x}(t)$; the probability of surviving at age $x+t$
- "x dies within t years, given that x has survived u years" :

$$
{ }_{u \mid t} q_{x}=\operatorname{Pr}\left[u<T_{x} \leq u+t\right]=S_{x}(u)-S_{x}(u+t)
$$

Formula

$$
\begin{gathered}
{ }_{t} p_{x}=1-{ }_{t} q_{x} \\
{ }_{t} p_{x} \cdot{ }_{u} p_{x+t}={ }_{t+u} p_{x} \\
{ }_{x} p_{0} \cdot{ }_{t} p_{x}={ }_{t+x} p_{0}
\end{gathered}
$$

Example

Given $S_{x}(t)=e^{-t}$. Find ${ }_{t} p_{y}$ and ${ }_{t \mid u} q_{y}$:

- ${ }_{t} p_{x}=e^{-t}$
- ${ }_{t} p_{y}={ }_{u+t} p_{x} /{ }_{u} p_{x}=e^{-t}$
- ${ }_{t \mid u} q_{x}=S_{x}(t)-S_{x}(u+t)={ }_{t} p_{x}-{ }_{u+t} p_{x}=e^{-t}-e^{-(t+u)}$

Example

Given ${ }_{1} p_{x}=0.99$ and ${ }_{1} p_{x+1}=0.9$, find ${ }_{2} p_{x}$.

$$
{ }_{2} p_{x}={ }_{1+1} p_{x}={ }_{1} p_{x} \cdot{ }_{1} p_{x+1}=0.99 \cdot 0.9
$$

The instantaneous rate of decrement due to death μ_{x} is defined as

$$
\mu_{x}=\lim _{d x \rightarrow x} \frac{1}{d x} \operatorname{Pr}\left[T_{0} \leq x+d x \mid T_{0}>x\right]
$$

Result 2.9 and Result 2.18

Re-write it using $S_{0}(x)$:

$$
\mu_{x}==\frac{-d / d x S_{0}(x)}{S_{0}(x)}
$$

Let f_{0} be the probability density function of T_{0} :

$$
\mu_{x}=\frac{f_{0}(x)}{S_{0}(x)}
$$

General case:

$$
\mu_{x+t}==\frac{f_{x}(t)}{S_{x}(t)}
$$

where $F_{x}(t)={ }_{t} q_{x}=\int_{0}^{t} f_{x}(s) d s$ (PDF of $\left.T_{x}\right)$.
Remark:

- Given $S_{x}(t)$, find μ_{x+t} :

$$
\mu_{x+t}=\frac{-d / d t\left(S_{x}(t)\right)}{S_{x}(t)}=-d / d t \ln \left(S_{x}(t)\right)
$$

- Given μ_{x+t}, find $S_{x}(t)$:

$$
S_{x}(t)=\exp \left(\int_{0}^{t}\left(-\mu_{x+s}\right) d s\right)
$$

Example

Given $S_{x}(t)=(10-t)^{2} / 100,0 \leq t<10$, find μ_{x+t} :

$$
\mu_{x+t}=-\frac{-2(10-t)}{(10-t)^{2}}=\frac{2}{10-t}
$$

Given $\mu_{x+t}=\frac{2}{10-t}$, find $S_{x}(t)$:

$$
S_{x}(t)=\exp \left(\int_{0}^{t}\left(-\frac{2}{10-s}\right) d s\right)
$$

In actuarial notation:

Result 2.20

$$
{ }_{t} q_{x}=\int_{0}^{t}{ }_{s} p_{x} \mu_{x+s} d s
$$

Mean of T_{x} :

- \dot{e}_{x} : the complete expectation of life; $\mathrm{E} T_{x}$.

$$
\dot{e}_{x}=\int_{0}^{\infty} t f_{x}(t) d t=\int_{0}^{\infty}{ }_{t} p_{x} d t
$$

- $\dot{e}_{x: \bar{n} \mid}$:

$$
\dot{e}_{x: \bar{n} \mid}=\int_{0}^{n}{ }_{t} p_{x} d t
$$

- Relation:

$$
\dot{e}_{x}=\dot{e}_{x: \bar{n} \mid}+{ }_{n} p_{x} \dot{e}_{x+n} .
$$

Example

Given $I_{x}=(100-x)^{0.5}$ for $0 \leq x \leq 100$ and $\dot{e}_{36: 2 \overline{8} \mid}=24.67$. Calculate

$$
\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t .
$$

- Simplify $\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t$:

$$
\begin{aligned}
\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t & =\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \frac{-{ }_{t} p_{36}{ }^{\prime}}{{ }_{t} p_{36}} d t \\
& =-\int_{0}^{28} t \cdot{ }_{t} p_{36}{ }^{\prime} d t \\
& =-\left[28 \cdot{ }_{28} p_{36}-\int_{0}^{28}{ }_{t} p_{36} d t\right]
\end{aligned}
$$

Example

Given $I_{x}=(100-x)^{0.5}$ for $0 \leq x \leq 100$ and $\dot{e}_{36: 2 \overline{2} \mid}=24.67$. Calculate

$$
\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t
$$

- Simplify $\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t$:

$$
\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t=-\left[28 \cdot{ }_{28} p_{36}-\int_{0}^{28}{ }_{t} p_{36} d t\right]
$$

- ${ }_{28} p_{36}=\frac{{ }_{36+28}}{{ }_{36}}=\frac{3}{4} ; \int_{0}^{28}{ }_{t} p_{36} d t=\dot{e}_{36: 28}=24.67$.
- $\int_{0}^{28} t \cdot{ }_{t} p_{36} \cdot \mu_{36+t} d t=3.67$

Example

Show that

$$
e_{x} \leq \dot{e}_{x} \leq \dot{e}_{x+1}+1
$$

First, we prove $\dot{e}_{x} \leq \dot{e}_{x+1}+1$:

$$
\begin{aligned}
\dot{e}_{x} & =\int_{0}^{\infty}{ }_{t} p_{x} d t \\
& =\int_{0}^{1}{ }_{t} p_{x} d t+\int_{1}^{\infty}{ }_{t} p_{x} d t \\
\left({ }_{t} p_{x} \leq 1\right) & \leq 1+\int_{1}{ }_{t} p_{x} d t \\
& =1+\int_{1}^{\infty} p_{x} \cdot{ }_{t-1} p_{x+1} d t
\end{aligned}
$$

Example

(continue...) Show that

$$
e_{x} \leq \dot{e}_{x} \leq \dot{e}_{x+1}+1
$$

First, we prove $\dot{e}_{x} \leq \dot{e}_{x+1}+1$:

$$
\begin{aligned}
\dot{e}_{x} & =1+\int_{1}^{\infty} p_{x} \cdot t-1 p_{x+1} d t \\
\left(p_{x} \leq 1\right) & \leq 1+\int_{1}^{\infty}{ }_{t-1} p_{x+1} d t \\
(u=t-1) & =1+\int_{0}^{\infty}{ }_{u} p_{x+1} d u \\
& =1+\dot{e}_{x+1}
\end{aligned}
$$

Curtate Future Lifetime

- The integer part of T_{x}

$$
K_{x}=\left\lfloor T_{x}\right\rfloor
$$

e.g. $\lfloor 1.999\rfloor=1$.

- $e_{x}:=\mathrm{E} K_{x}$.

Note:

$$
\begin{aligned}
e_{x}=\mathrm{E} K_{x} & =\sum_{k=0}^{\infty} k \cdot \operatorname{Pr}\left(K_{x}=k\right) \\
& =\sum_{k=0}^{\infty} k \cdot \operatorname{Pr}\left(T_{x} \in[k, k+1)\right) \\
& =\sum_{k=0}^{\infty} k \cdot\left(k p_{x}-k+1 p_{x}\right) \\
& =\sum_{k=1}^{\infty} k p_{x}
\end{aligned}
$$

Example

(continue...) Show that

$$
e_{x} \leq \dot{e}_{x} \leq \dot{e}_{x+1}+1
$$

Note:

- $e_{x}=\sum_{k=1}^{\infty} k p_{x}=p_{1}+2 p_{2}+3 p_{3}+\ldots$
- $\dot{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{1} t p_{x} d t+\int_{1}^{2}{ }_{t} p_{x} d t+\int_{2}^{3}{ }_{t} p_{x} d t+\ldots$
- ${ }_{s} p_{x}$ is decreasing in s.

Outline

(1) Survival Model

(2) Life Table

(3) Annuities

Notations:

- I_{x} : number alive at age x

Remark

$$
I_{x+t} / I_{x}={ }_{t} p_{x}
$$

- uniform distribution of deaths (UDD)

$$
{ }_{s} q_{x}=s q_{x}
$$

- constant force of mortality (CFM)

$$
{ }_{s} p_{x+t}=\left(p_{x}\right)^{s}
$$

Example

Standard Ultimate Life Table, "LTAM tables" in GauchoSpace.

- Find I_{40}.
(=99, 338.3. Directly find it in SULT)
- Compute ${ }_{10} p_{30}$. $\left(=I_{30+10} / I_{30}=0.9966\right.$. Use the formula above)
- Compute ${ }_{1} q_{35}$.
(Directly find it in SULT; or $q_{35}=1-p_{35}=1-\frac{l_{36}}{35}=0.000391$)
- Or explain it: the probability of being dead in the next 1 year. How many people die in the next 1 year?

$$
I_{35}-I_{36}
$$

Main Problem:

Now, we know how to compute ${ }_{10} p_{30}$. But how to compute

$$
0.75 p_{30.5} ?
$$

- uniform distribution of deaths (UDD)

$$
{ }_{s} q_{x}=s q_{x}
$$

where $0 \leq s \leq 1$.

Useful Formula

Under UDD,

$$
{ }_{s} q_{x+t}=\frac{s q_{x}}{1-t q_{x}}
$$

where $(s+t) \leq 1$.

Example

We CANNOT directly use

$$
0.75 p_{30.5}=0.75 p_{30+0.5}
$$

because $0.75+0.5>1$.

Useful Formula

- UDD.

$$
{ }_{s} q_{x}=s q_{x}
$$

where $0 \leq s \leq 1$
-

$$
{ }_{t} p_{x} \cdot{ }_{u} p_{x+t}={ }_{t+u} p_{x}
$$

Example

Compute $0.75 p_{30.5}:($ Hint: $30.5=30+0.5 ; x+t)$

$$
\begin{aligned}
0.75 p_{30.5} & =\frac{0.5 p_{30} \cdot 0.75 p_{30.5}}{0.5 p_{30}} \\
& =\frac{1.25 p_{30}}{0.5 p_{30}}=\frac{p_{30} \cdot 0.25 p_{31}}{0.5 p_{30}} \\
& =
\end{aligned}
$$

Note: Last equality. p and q.

- constant force of mortality (CFM)

$$
{ }_{s} p_{x+t}=\left(p_{x}\right)^{s}
$$

where $s+t<1$.

Example

(EXAMPLE 5 and EXAMPLE 8) Calculate

$$
0.4 q_{40.2}
$$

- Under CFM:

$$
0.4 q_{40.2}=1-0.4 p_{40.2}=1-p_{40}^{0.4}=0.000211
$$

- Under UDD $(0.4+0.2 \leq 1)$:

$$
0.4 q_{40.2}=\frac{0.4 q_{40}}{1-0.2 q_{40}}=0.000211
$$

- constant force of mortality (CFM)

$$
{ }_{s} p_{x+t}=\left(p_{x}\right)^{s}
$$

where $s+t<1$.
Example
(EXAMPLE 9) Calculate

$$
0.7 q_{70.6}
$$

- The following method is WRONG

$$
0.7 q_{70.6}=1-\left(p_{70}\right)^{0.7}
$$

because $0.7+0.6>1$.

Useful Results

- constant force of mortality (CFM)

$$
{ }_{s} p_{x+t}=\left(p_{x}\right)^{s}
$$

where $s+t<1$.
-

$$
{ }_{t} p_{x} \cdot{ }_{u} p_{x+t}={ }_{t+u} p_{x}
$$

Example

(EXAMPLE 9) Calculate $0.7 q_{70.6}:\left(=1-0.7 p_{70.6}\right)$

$$
\begin{aligned}
0.7 p_{70.6} & =\frac{0.6 p_{70} \cdot 0.7 p_{70.6}}{0.6 p_{70}} \\
& =\frac{1.3 p_{70}}{0.6 p_{70}}=\frac{p_{70} \cdot 0.3 p_{71}}{0.6 p_{70}}
\end{aligned}
$$

Notations:

- ${ }_{t} q_{[x]+s}: \operatorname{Pr}[$ a life currently aged $x+s$ who was select at age x survives to age $x+s+t$]
- ${ }_{t} p_{[x]+s}:=1-{ }_{t} q_{[x]+s}$.
- Note:
- ${ }_{t} q_{[x]+s}$ depends on $t,[x], s$;
- ${ }_{t} q_{x+s}$ only depends on $t, x+s$.

Select \& Ultimate Model

Example (from textbook)

- Background: Men who need to undergo surgery because they are suffering from a particular disease. The surgery is complicated, so only 50% of them could survive for a year. And if they do survive for a year, they are fully cured.
- Select: time for 1st surgery
- Question: the probability that a man aged 60 who is just about to have surgery will be alive at age 70 .

Select \& Ultimate Model

Example (from textbook)

- Background: Men who need to undergo surgery because they are suffering from a particular disease.
- The surgery is complicated, so only 50% of them could survive for a year. And if they do survive for a year, they are fully cured.
Select period: 1 year.
- Select: time for 1st surgery
- Question: the probability that a man aged 60 who is just about to have surgery will be alive at age 70. $10 P_{[60]}$
- Solution:
$=\operatorname{Pr}[$ live 1 year after surgery $] \times \operatorname{Pr}[$ live 9 year from age 61]
$=0.5 \times{ }_{9} p_{61}=0.5 \times \frac{{ }_{70}}{160}$

Example (Lecture notes: EXAMPLE 13 (textbook 3.10))

Represent ${ }_{2 \mid 6} q_{[30]+2}$ using $I_{[x]+t}$ or I_{x+t}. Select period 5 years.

- ${ }_{2 \mid 6} q_{[30]+2}$: The probability that a life now aged 32 who was select 2 years ago will die between 34 and 40 .
- die between 34 and $40=$ (die between 34 and 35) or (survive between 34 and 35 ; then die between 35 and 40)
- die between 34 and $40=$ not survive between 34 and 40

Example (Lecture notes: EXAMPLE 13 (textbook 3.10))

Represent ${ }_{2 \mid 6} q_{[30]+2}$ using $l_{[x]}$ or I_{x}. Select period 5 years.

- ${ }_{2 \mid 6} q_{[30]+2}$: The probability that a life now aged 32 who was select 2 years ago will die between 34 and 40 .

$$
\begin{aligned}
2 \mid 6 q_{[30]+2} & ={ }_{2} q_{[30]+2} \cdot{ }_{6} q_{[30]+4} \\
& =\frac{l_{[30]+4}}{{ }_{[30]+2}} \cdot\left(q_{[30]+4}+p_{[30]+4} \cdot{ }_{5} q_{[30]+5}\right)
\end{aligned}
$$

Example (Lecture notes: EXAMPLE 13 (textbook 3.10))

Represent ${ }_{2 \mid 6} q_{[30]+2}$ using $I_{[x]}$ or I_{x}. Select period 5 years.

- ${ }_{2 \mid 6} q_{[30]+2}$: The probability that a life now aged 32 who was select 2 years ago will die between 34 and 40 .

$$
\begin{aligned}
2 \mid 6 q_{[30]+2} & ={ }_{2} q_{[30]+2} \cdot{ }^{2} q_{[30]+4} \\
& =\frac{I_{[30]+4}}{I_{[30]+2}} \cdot\left(1-\frac{I_{40}}{I_{[30]+4}}\right)
\end{aligned}
$$

Outline

(1) Survival Model

(2) Life Table
(3) Annuities

Interest notations:

- Assume we fix
i : interest rate for 1 year; put $1 \$$ in the bank, get $(1+i) \$$ after 1 year.
- Related concept
- $i^{(12)} / 12$: "interest rate for 1 mouth";
put $1 \$$ in the bank, get $1+i^{(12)} / 12$ after 1 month. For 1 year, get
$\left(1+i^{(12)} / 12\right)^{12}=1+i$
Nominal rate, compounded \mathbf{p} times per year $i^{(p)}$.
- Force of interest. "interest rate for a very small time interval" Let $p \rightarrow \infty$:

$$
\lim _{p \rightarrow \infty}\left(1+\frac{i^{(p)}}{p}\right)^{p}=e^{\lim _{p \rightarrow \infty} i^{(p)}}=1+i
$$

Denote $\delta=\lim _{p \rightarrow \infty} i^{(p)} .1+i=e^{\delta}$.

- If I want to have $1 \$$ at time t, how much money I should put it into bank at time 0 ?

$$
e^{-\delta t}
$$

- Now T_{x} is a random variable. At time T_{x}, I need to have $1 \$$. At present (time 0), the $1 \$$ worth

$$
\mathbb{E} e^{-\delta T_{x}}
$$

Notations:

- Expected present value

$$
\bar{A}_{x}:=\mathbb{E}\left(v^{T_{x}}\right)=\mathbb{E}\left(e^{-\delta T_{x}}\right)=\int_{0}^{\infty} e^{-\delta t}{ }_{t} p_{x} \mu_{x+t} d t
$$

- $Z=e^{-\delta T_{x}}=v^{T_{x}}$

$$
A_{x}=\mathbb{E}\left[v^{K_{x}+1}\right]=v q_{x}+v^{2}{ }_{1 \mid} q_{x}+v^{3}{ }_{2 \mid} q_{x}+\ldots
$$

Reminder: $K_{x}:=\left\lfloor T_{x}\right\rfloor ;{ }_{k} \mid q_{x}=\operatorname{Pr}\left[K_{x}=k\right]=\operatorname{Pr}\left[k \leq T_{x}<k+1\right]$.

- $Z=v^{K_{x}+1}$. (We don't need δ anymore)

Example (Compute variance of Z)

Useful formula:

$$
\mathrm{V}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}
$$

And

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(v^{2}\right)^{T_{x}}\right] \\
& =\mathbb{E}\left[e^{-2 \delta T_{x}}\right] \\
& =\int_{0}^{\infty} e^{-2 \delta t}{ }_{t} p_{x} \mu_{x+t} d t
\end{aligned}
$$

We write ${ }^{2} \bar{A}_{x}=\mathbb{E}\left[Z^{2}\right]$. Then

$$
\mathrm{V}[Z]={ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}
$$

Example (Compute $P(Z \leq 0.5)$)

$$
\begin{aligned}
\operatorname{Pr}[Z \leq 0.5] & =\operatorname{Pr}\left[e^{-\delta T_{x}} \leq 0.5\right] \\
& =\operatorname{Pr}\left[T_{x}>\log (2) / \delta\right] \\
& ={ }_{u} p_{x}
\end{aligned}
$$

where $u=\log (2) / \delta$.

Notations:

- (continuous) n-year term insurance

$$
\bar{A}_{x: \bar{n} \mid}^{1}:=\int_{0}^{n} e^{-\delta t}{ }_{t} p_{x} \mu_{x+t} d t
$$

- (discrete) n-year term insurance

$$
A_{x: \bar{n} \mid}^{1}:=\sum_{k=0}^{n-1} v^{k+1}{ }_{k \mid} q_{x}
$$

- Reminder Whole life insurance:

$$
\begin{aligned}
& \bar{A}_{x}:=E\left[v^{T_{x}}\right]=\int_{0}^{\infty} e^{-\delta t}{ }_{t} p_{x} \mu_{x+t} d t \\
& A_{x}:=E\left[v^{K_{x}+1}\right]=\sum_{k=0}^{\infty} v^{k+1}{ }_{k \mid} q_{x}
\end{aligned}
$$

- (n-term insurance) Present value of $\$ 1$:

$$
\begin{aligned}
& Z= \begin{cases}v^{T_{x}} & T_{x} \leq n \\
0 & \text { o.w. }\end{cases} \\
& Z= \begin{cases}v^{K_{x}+1} & K_{x} \leq n-1 \\
0 & \text { o.w. }\end{cases}
\end{aligned}
$$

Example (Compute the variance of Z)

For a 2-year term insurance on (x), calculate $\operatorname{Var}[Z]$ (given benefit $\$ 1$). First, compute $E[Z]$:

$$
\begin{aligned}
E[Z] & =A_{x: \overline{2} \mid}^{1} \\
& =v q_{x}+v^{2}{ }_{1} \mid q_{x}
\end{aligned}
$$

where q can be computed using life table and $v=\frac{1}{i+1}$. And compute $E\left[Z^{2}\right]$:

$$
E\left[Z^{2}\right]=v^{2} q_{x}+v^{4}{ }_{1} \mid q_{x}
$$

Then use $\operatorname{Var}[Z]=E\left[Z^{2}\right]-(E[Z])^{2}$.

Pure Endowment:

- Present value of \$1:

$$
Z= \begin{cases}0 & T_{x}<n \\ v^{n} & T_{x} \geq n\end{cases}
$$

- Definition

$$
{ }_{n} E_{x}:=E[Z]=v^{n}{ }_{n} p_{x}
$$

Example

For a Pure Endowment written on a life age (x), compute $\operatorname{Var}[Z]$.

$$
E[Z]=v^{n}{ }_{n} p_{x}
$$

$$
E\left[Z^{2}\right]=v^{2 n}{ }_{n} p_{x}
$$

$$
\begin{aligned}
\operatorname{Var}[Z] & =E\left[Z^{2}\right]-(E[Z])^{2} \\
& =v^{2 n}{ }_{n} p_{x}-v^{2 n}{ }_{n} p_{x}^{2} \\
& =v^{2 n}\left({ }_{n} p_{x}\right)\left({ }_{n} q_{x}\right)
\end{aligned}
$$

Endowment:

- Present value of \$1:

$$
Z= \begin{cases}v^{T_{x}} & T_{x}<n \\ v^{n} & T_{x} \geq n\end{cases}
$$

- Definition

$$
\bar{A}_{x: \bar{n} \mid}:=E[Z]=\bar{A}_{x: \bar{n}}^{1}+{ }_{n} E_{x} .
$$

- Discrete case

$$
A_{x: \bar{n} \mid}:=A_{x: \bar{n}}^{1}+{ }_{n} E_{x} .
$$

Deferred insurance benefits:

$$
Z= \begin{cases}0 & T_{x} \notin[u, u+n) \\ e^{-\delta T_{x}} & T_{x} \in[u, u+n)\end{cases}
$$

- Definition:

$$
\begin{gathered}
u \mid \bar{A}_{x: \bar{n} \mid}^{1}=E[Z]=\int_{u}^{u+n} e^{-\delta t}{ }_{t} p_{x} \mu_{x+t} d t . \\
u \mid \bar{A}_{x: \bar{n} \mid}^{1}=\bar{A}_{x: u \mp n \mid}^{1}-\bar{A}_{x: \bar{u} \mid}^{1}
\end{gathered}
$$

Summary

The annual case

Notation	Z	$E[Z]$
A_{x}	$Z=v^{K_{x}+1}$	$v q_{x}+v^{2}{ }_{1} \mid q_{x}+\ldots$
$A_{x: \bar{n} \mid}^{1}$	$Z=v^{K}+1 \cdot 1\left\{K_{x} \leq n-1\right\}$	$\sum_{k=0}^{n-1} v^{k+1}{ }_{k} \mid q_{x}$
$A_{x: \bar{n} \mid}^{1}$	$Z=v^{n} \cdot 1\left\{T_{x} \geq n\right\}$	$v^{n}{ }_{n} p_{x}$
$A_{x: \bar{n} \mid}$	$Z=v^{\min \left(K_{x}+1, n\right)}$	$A_{x: \bar{n} \mid}^{1}+v^{n}{ }_{n} p_{x}$

Insurance notes, page 5.

Approximation:

$$
\bar{A}_{x} \approx \frac{i}{\delta} A_{x}
$$

(under UDD, it is " $=$ ")

$$
\bar{A}_{x: \bar{n} \mid} \approx \frac{i}{\delta} A_{x: \bar{n} \mid}^{1}+v_{n}^{n} p_{x}
$$

Approximation:

$$
\bar{A}_{x} \approx(1+i)^{1 / 2} A_{x}
$$

(the claim acceleration approach)

$$
\bar{A}_{x: \bar{n} \mid} \approx(1+i)^{1 / 2} A_{x: \bar{n} \mid}^{1}+v^{n}{ }_{n} p_{x}
$$

Table in textbook:

x	\bar{A}_{x} / A_{x}
20	1.0246
40	1.0246
60	1.0246
80	1.0248
100	1.0261
120	1.0368

Note $i=5 \% . i / \delta=1.0248$ and $(1+i)^{1 / 2}=1.0247$.

Continue: the claim acceleration approach

Annual case: pay at the end of year
Monthly case: pay at the end of month $(\mathrm{m}=12)$

- $\left.A_{x}^{(m)}=v^{1 / m}{ }_{1 / m} q_{x}+v^{2 / m}{ }_{1 / m \mid 1 / m} q_{x}+\cdots=\sum_{k=0}^{\infty} v^{k+\frac{1}{m}} \frac{k}{m} \right\rvert\, \frac{1}{m} q_{x}$
- Re-write it in annual case: $\frac{m+1}{2 m}$ is the average time of payment.

$$
\left.A_{x}^{(m)} \approx q_{x} v^{\frac{m+1}{2 m}}+{ }_{1} \right\rvert\, q_{x} v^{1+\frac{m+1}{2 m}}+\ldots
$$

- Take $v^{\frac{m-1}{2 m}}$ out:

$$
A_{x}^{(m)} \approx(1+i)^{\frac{m-1}{2 m}} \cdot A_{x}
$$

Whole life annuity-due

- Reminder:

If I have $1 \$$, how much money I will have after n years?
Answer: $v^{n} \$$.

- Whole life annuity-due

$$
\begin{gathered}
\ddot{a}_{x}=1+v \cdot p_{x}+v^{2} \cdot{ }_{2} p_{x}+v^{3} \cdot{ }_{3} p_{x}+\ldots \\
\bar{a}_{x}=\int_{0}^{\infty} e^{-\delta t}{ }_{t} p_{x} d t
\end{gathered}
$$

- Y, the present value random variable (for whole life annuity-due, discrete case). Then

$$
E[Y]=E\left[I\left(T_{x}>0\right)\right]+v \cdot E\left[I\left(T_{x}>1\right)\right]+v^{2} \cdot E\left[I\left(T_{x}>2\right)\right]+\ldots
$$

Whole life annuity-due

- Y, the present value random variable.

$$
E[Y]=E\left[I\left(T_{x}>0\right)\right]+v \cdot E\left[I\left(T_{x}>1\right)\right]+v^{2} \cdot E\left[I\left(T_{x}>2\right)\right]+\ldots
$$

- $I\left(T_{x}>0\right)=I\left(0<T_{x}<1\right)+I\left(1 \leq T_{x}<2\right)+I\left(2 \leq T_{x}<3\right)+\ldots$.

Then

$$
\begin{aligned}
E\left[I\left(T_{x}>0\right)\right] & =\operatorname{Pr}\left[K_{x}=0\right]+\operatorname{Pr}\left[K_{x}=1\right]+\operatorname{Pr}\left[K_{x}=2\right]+\ldots \\
& =\sum_{k=0}^{\infty} k \mid q_{x}
\end{aligned}
$$

Whole life annuity-due

- Y, the present value random variable.

$$
E[Y]=E\left[I\left(T_{x}>0\right)\right]+v \cdot E\left[I\left(T_{x}>1\right)\right]+v^{2} \cdot E\left[I\left(T_{x}>2\right)\right]+\ldots
$$

$$
\begin{aligned}
& E\left[I\left(T_{x}>0\right)\right]=\sum_{k=0}^{\infty} k \mid q_{x} \\
& E\left[I\left(T_{x}>1\right)\right]=\sum_{k=1}^{\infty} k \mid q_{x}
\end{aligned}
$$

Whole life annuity-due

- Y, the present value random variable.

$$
\begin{aligned}
E[Y] & =E\left[I\left(T_{x}>0\right)\right]+v \cdot E\left[I\left(T_{x}>1\right)\right]+v^{2} \cdot E\left[I\left(T_{x}>2\right)\right]+\ldots \\
& =0\left|q_{x}+{ }_{1}\right| q_{x} \cdot(1+v)+{ }_{2} \mid q_{x} \cdot\left(1+v+v^{2}\right)+\ldots \\
& =\sum_{k=0}^{\infty} \ddot{a}_{k+1}|k| q_{x}
\end{aligned}
$$

where $\ddot{a}_{\overline{k+1} \mid}=\sum_{t=0}^{k} v^{t}$ is a series of annuities-certain.
(Example 5.1, pg 111)

Whole life annuity-due

- Let $Y=\frac{1-v^{T} x}{\delta}$ be the present value random variable.

$$
\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}
$$

- It also holds for discrete case:

$$
\ddot{a}_{x}=\frac{1-A_{x}}{d}
$$

- Or term annuities due

$$
\ddot{a}_{x: \bar{n} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}
$$

Whole life annuity-due

Compute its variance (continuous case):

$$
\operatorname{Var}[Y]=\frac{1}{\delta^{2}}\left({ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right)=\frac{2}{\delta^{2}}\left(\bar{a}_{x}-{ }^{2} \bar{a}_{x}\right)-\left(\bar{a}_{x}\right)^{2} .
$$

where ${ }^{2} \bar{a}_{x}=\int_{t=0}^{\infty} e^{-2 \delta t}{ }_{t} p_{x} d t$
Discrete case:

$$
\operatorname{Var}[Y]=\frac{2}{d}\left[\ddot{a}_{x}-{ }^{2} \ddot{a}_{x}\right]+{ }^{2} \ddot{a}_{x}
$$

where ${ }^{2} \ddot{a}_{x}=\sum v^{2 k}{ }_{k} p_{x}$

Whole life annuity-due

Example

Given $\delta=0.05$ and $(\mu)=0.02$. Compute $\bar{a}_{x: \overline{1} 0 \mid}$ and $\operatorname{Var}[Y]$.
Solution.

- Directly compute it by definition.

$$
\bar{a}_{x: \overline{1} 0 \mid}=\int_{0}^{10} e^{-0.05 t}{ }_{t} p_{x} d t
$$

(${ }_{t} p_{X}$ can be computed using $\mu=0.02$.)

- For $\operatorname{Var}[Y]$,

$$
\operatorname{Var}[Y]=\frac{2}{\delta^{2}}\left(\bar{a}_{x: \overline{10} \mid}-{ }^{2} \bar{a}_{x: \overline{10} \mid}\right)-\left(\bar{a}_{x: \overline{10} \mid}\right)^{2}
$$

Whole life annuity-due

Example

Given: $\delta=0.05$; Mortality is uniformly distributed throughout life (DeMoivre) with $\omega=100$. Compute \bar{a}_{35} and $\operatorname{Var}[Y]$.

Solution.

- We can directly compute ${ }^{2} \bar{A}_{35}$ and \bar{A}_{35} using DeMoivre Law.
- ${ }^{2} \bar{A}_{35}=\frac{1}{100-35}{ }^{2} \bar{a}_{100-35 \mid}$ and
- $\bar{A}_{35}=\frac{1}{100-35} \bar{a}_{100-35}$
(annuities certain, $\int_{0}^{65} e^{-\delta t} d t$)

Annuities payable (m) times per year

- Annuities payable (m) times due

$$
\ddot{a}_{x}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}
$$

$d^{(m)}$: the nominal rate of discount compounded m times.
$=p\left(1-v^{1 / m}\right)$.

- Applying the UDD

$$
\ddot{a}_{x}^{(m)}=\alpha(m) \ddot{a}_{x}-\beta(m)
$$

- Woolhouse approximation:

$$
\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x}-\frac{m-1}{2 m}-\frac{m^{2}-1}{12 m^{2}}\left(\delta+\mu_{x}\right)
$$

Annuities payable (m) times per year

Example

Mortality follows the ILT. UDD assumption. $i=0.06$.
Calculate $\ddot{a}_{25: 20 \mid}^{(4)}$.

- UDD: $\ddot{a}_{25: 50 \mid}^{(4)}=\alpha(4) \ddot{a}_{25: 20 \mid}^{(4)}-\beta(4) \cdot\left(1-{ }_{20} E_{25}\right)$
- By ILT table: ${ }_{20} E_{25}=0.29873$.
- $\alpha(4)=1.00027$, and $\beta(4)=0.38424$.

$$
\alpha(4)=\frac{i d}{i^{(4)} d^{(4)}} ; \quad \beta(4)=\frac{i-i^{(m)}}{i^{(m)} d^{(m)}}
$$

where $i^{(m)}=m\left[(1+i)^{1 / m}-1\right]$ and $d^{m}=m\left(1-(1+i)^{-1 / m}\right)$.

Annuities payable (m) times per year

Example

You are given that δ (force of interest) and μ (force of mortality) are each constant and that $\bar{a}_{x}=12.50$. Use the Woolhouse approximation to 3 terms to find $\ddot{a}_{x}^{(12)}$.

Woolhouse approximation:

$$
\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x}-\frac{m-1}{2 m}-\frac{m^{2}-1}{12 m^{2}}(\delta+\mu)
$$

And $\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}=\frac{1}{\mu+\delta}$. Then we can solve $\delta+\mu . \ddot{a}_{x}=\frac{1}{1-e^{-(\delta+\mu)}}$.

Deferred Annuities

- u-year deferred annuity-due

$$
\begin{gathered}
u \mid \ddot{a}_{x}=\ddot{a}_{x}-\ddot{a}_{x: \bar{u} \mid}=\sum_{k=0}^{\infty} v^{u+k_{u+k} p_{x}} \\
{ }_{u \mid} \ddot{a}_{x}=v^{u}{ }_{u} p_{x} \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x+u}={ }_{u} E_{x} \ddot{a}_{x+u}
\end{gathered}
$$

Deferred Annuities

Example (Deferred n-term annuity immediate)

The force of mortality follows Makeham's law with $A=0.0002$, $B=0.0000003$ and $c=1.10000$. The annual effective rate of interest is 5%. Calculate ${ }_{1 \mid}{ }^{2} 70: \overline{2} \mid$.

- Makeham's law of mortality: $\mu_{x}=A+B c^{x}$.

$$
\Longrightarrow \quad{ }_{t} p_{x}=\exp \left(-A t-\frac{B c^{x}}{\ln c}\left(c^{t}-1\right)\right) .
$$

- We want to compute one-year deferred two-year annuity immediate.

$$
{ }_{1 \mid} a_{70: \overline{2} \mid}=v^{2}{ }_{2} p_{70}+v^{3}{ }_{3} p_{70} .
$$

- Compute it using given numbers (≈ 1.75819).

Solve ${ }_{t} p_{x}$

Following Result:

$$
{ }_{t} p_{x}=\exp \left(-\int_{0}^{t} \mu_{x+u} d u\right)
$$

μ_{x} is given. Solve ${ }_{t} p_{x}$.

Example (Deferred whole life annuity due)

For a 5-year deferred whole life annuity-due of 1 on (x) you are given:
(1) $\mu_{x+t}=0.01$ for $t \geq 1$.
(2) $i=0.04$.
(3) $\ddot{a}_{x: 5 \mid}=4.542$.

Let S be the sum of annuity payments. Calculate $\operatorname{Pr}\left[S>{ }_{5 \mid} \ddot{a}_{x}\right]$

- Recall that ${ }_{5} \ddot{a}_{x}=\ddot{a}_{x}-\ddot{a}_{x: 5}$. given in (3)
- Use (1) and CMF to solve \ddot{a}_{x}.

$$
\begin{gathered}
\ddot{a}_{x}=1+v p_{x} \ddot{a}_{x+1}=1+v p_{x} \ddot{a}_{x} . \\
\Longrightarrow \ddot{a}_{x}=1 /\left(1-\frac{1}{1.04} \cdot e^{-0.01}\right) .
\end{gathered}
$$

- $\operatorname{Pr}\left[S>{ }_{5 \mid} \ddot{a}_{x}\right]=\operatorname{Pr}[S>16.2788]$. We need to compute the probability that (x) survive to year 21. $(=\exp (-0.01 \times 21)=0.81)$

Guaranteed Annuities

- n-year guaranteed annuity-due

$$
\ddot{a}_{x: \bar{n} \mid}=\ddot{a}_{\bar{n} \mid}+{ }_{n} E_{x} \ddot{a}_{x+n}
$$

- Notice ${ }_{u} \mid \ddot{a}_{x}={ }_{u} E_{x} \ddot{a}_{x+u}$; so

$$
\ddot{a}_{\bar{x}: \bar{n} \mid}=\ddot{a}_{\bar{n} \mid}+\ddot{a}_{x}-\ddot{a}_{x: \bar{n} \mid}
$$

Guaranteed Annuities

Example

At interest rate $i=0.78$. You are given
(1) $\ddot{a}_{x}=5.6$
(2) $\ddot{a}_{x: \overline{2} \mid}=5.6459$.
(3) $e_{x}=8.83$ (complete expectation of life)

Calculate e_{x+1}.

- $\ddot{a}_{x: \overline{\overline{2}}}=\ddot{a}_{\overline{2}}\left|+\ddot{a}_{x}-\ddot{a}_{x: \overline{2}}\right|$ where $\ddot{a}_{\overline{2} \mid}=1+v$ and $\ddot{a}_{x: \overline{2} \mid}=1+v p_{x}$.
- And $e_{x}=\sum_{t=1}^{\infty}{ }_{t} p_{x}=p_{x}\left(1+e_{x+1}\right) .\left({ }_{t+1} p_{x}=p_{x} \cdot{ }_{t} p_{x+1}\right)$
- Solve e_{x+1}. (≈ 8.29)
- Increasing annuities due.

$$
(I \ddot{a})_{x}=\sum_{t=0}^{\infty} v^{t}(t+1)_{t} p_{x}
$$

- Geometrically increasing. annuity due

$$
\ddot{a}_{x: \bar{n} \mid ; *}=\sum_{t=0}^{n-1} v^{t}(1+j)^{t}{ }_{t} p_{x} .
$$

- other...

Outline

(1) Survival Model

(2) Life Table

(3) Annuities
(4) Premium

(5) Policy Value/Reserves

Premium

Formula: (fully-discrete, level benefit, level premium policies)

- Whole Life with premiums for life

$$
P_{x}=A_{x} / \ddot{a}_{x}
$$

- n -year term insurance with premiums for n years

$$
P_{x: \bar{n} \mid}^{1}=A_{x: \bar{n} \mid}^{1} / \ddot{a}_{x}
$$

- n -year Pure endowment with premiums for n years:

$$
P_{x: \bar{n} \mid}=A_{x: \bar{n} \mid} / \ddot{a}_{x}
$$

Premium

Formula (continue):

- n-year Endowment insurance with premiums for n years:

$$
P_{x: \bar{n} \mid}=A_{x: \bar{n} \mid} / \ddot{a}_{x: \bar{n} \mid}
$$

- k-payment Whole life policy:

$$
{ }_{k} P_{x}=A_{x} / \ddot{a}_{x: \bar{k} \mid}
$$

Premium

Plan	Premium	Benefit
Fully discrete	At the start of each year \ddot{a}_{x}	At the end of the year of death (if death benefit) $\left(A_{x}\right)$
Fully continuous	Continuously $\left(\bar{a}_{x}\right)$	Moment of Death $\left(\bar{A}_{x}\right)$
Semi-continuous	At the start of each year $\left(\ddot{a}_{x}\right)$	Moment of Death $\left(\bar{A}_{x}\right)$

(for whole life)

Premium

Example

Using the Illustrative Table at 6%, find the level annual benefit premium for a 25 -year endowment insurance issued to (40) with death benefit 1000 and endowment benefit 2000 in fully discrete cases.

Solution: use formula (a little bit different)

$$
P_{40: \overline{25}}=\left[1000 A_{40: \overline{25}}^{1}+2000 A_{40: \frac{1}{25}}\right] / \ddot{a}_{40: \overline{25}}
$$

Next step: we need to solve $A_{40: \overline{25} \mid}^{1}, A_{40: \left.\frac{1}{25} \right\rvert\,}$ and $\ddot{a}_{40: \overline{25} \mid}$.

Premium

Example

Using the Illustrative Table at 6%, find the level annual benefit premium for a 25-year endowment insurance issued to (40) with death benefit 1000 and endowment benefit 2000 in fully continuous cases.

Solution: use formula

$$
P_{40: \overline{25}}=\left[1000 \bar{A}_{40: \overline{25} \mid}^{1}+2000 A_{40: \left.\frac{1}{25} \right\rvert\,}\right] / \bar{a}_{40: \overline{25} \mid}
$$

Premium

Example

Under UDD assumption and
(i) $i=0.04$, (ii) ${ }_{n} E_{x}=0.6$, and (iii) $\bar{A}_{x: \bar{n} \mid}=0.804$

Calculate $P\left(\bar{A}_{x: \bar{n} \mid}\right)$.
Solution: use formula

$$
P=\frac{\bar{A}_{x: \bar{n} \mid}}{\ddot{a}_{x: \bar{n} \mid}}=0.155 .
$$

$\ddot{a}_{x: \bar{n} \mid}$ is unknown. Use UDD: $A_{x: \bar{n} \mid}^{1}=\frac{\delta}{i} \bar{A}_{x: \bar{n} \mid}^{1}=0.200$.
And $A_{x: \bar{n} \mid}=A_{x: \bar{n} \mid}^{1}+{ }_{n} E_{x}=0.80$. Then

$$
\ddot{a}_{x: \bar{n} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}=5.2
$$

The Net Future Loss Random Variable

- Net future loss (exclude expenses):
$L_{0}^{n}=P V$ of benefit outgo - PV of net premium income
- Gross future loss (include expenses):

$$
\begin{aligned}
L_{0}^{g}=P V \text { of benefit outgo } & + \text { PV of expenses } \\
& -P V \text { of net premium income }
\end{aligned}
$$

- Equivalent principle:

Expected present value of benefits $=$ EPV premiums (today, all L means L^{n})

The Net Future Loss Random Variable

- Expected value

$$
E[L]=E[Z]-Q E[Y]
$$

where Z is Insurance r.v. and Y is Annuity r.v.

- Variance

$$
\begin{aligned}
\operatorname{Var}[L] & =\operatorname{Var}[Z]-Q^{2} \cdot \operatorname{Var}[Y]-2 Q \cdot \operatorname{COV}[Z, Y] \\
& =\left(1+\frac{Q}{d}\right)^{2} \operatorname{Var}[Z]
\end{aligned}
$$

(for short-term discrete insurance)

The Net Future Loss Random Variable

	Fully-continuous	Fully-discrete
Whole life	$\left(1+\frac{Q}{\delta}\right)^{2}\left[{ }^{2} \bar{A}-\bar{A}^{2}\right]$	$\left(1+\frac{Q}{d}\right)^{2}\left[{ }^{2} A-A^{2}\right]$
endowment insurance (n-yr)	$\left(1+\frac{Q}{\delta}\right)^{2}\left[{ }^{2} \bar{A}_{x: \bar{n} \mid}-\bar{A}_{x: \bar{n} \mid}^{2}\right]$	$\left(1+\frac{Q}{d}\right)^{2}\left[{ }^{2} A_{x: \bar{n} \mid}-A_{x: \bar{n} \mid}^{2}\right]$

The Net Future Loss Random Variable

Example

A 3-year fully discrete endowment insurance issued to (x) has death benefit of 1000 . Given $q_{x}=0.1, q_{x+1}=0.2, q_{x+2}=0.3$, and $i=0.1$.

- Find the loss random variable L.
- Use the equivalence principle to solve the premium.

Solution: $L=P V$ of benefit outgo -PV of net premium income.

$$
L= \begin{cases}1000 v-Q & K_{x}=0, \text { prob. } \quad q_{x}=0.01 \\ 1000 v-Q \ddot{a}_{\overline{2}} \mid & K_{x}=1, \text { prob. }{ }_{1} q_{x}=0.18 \\ 1000 v-Q \ddot{a}_{\overline{3} \mid} & K_{x} \geq 2, \text { prob. }{ }_{2} p_{x}=0.72\end{cases}
$$

The Net Future Loss Random Variable

Example

A 3-year fully discrete endowment insurance issued to (x) has death benefit of 1000. Given $q_{x}=0.1, q_{x+1}=0.2, q_{x+2}=0.3$, and $i=0.1$.

- Find the loss random variable L.
- Use the equivalence principle premium to solve the premium.

Equivalence Principle $(E[L]=0)$:

$$
0=0.01(1000 v-Q)+0.18\left(1000 v-Q \ddot{a}_{\overline{2}} \mid\right)+0.72\left(1000 v-Q \ddot{a}_{\overline{3} \mid}\right)
$$

Compute $\ddot{a}_{\overline{2} \mid}(\approx 1.9019)$ and $\ddot{a}_{\overline{3} \mid}(\approx 2.7355)$.
Solve for Q :

$$
Q=323.47
$$

The Net Future Loss Random Variable

Example

L is the loss-at-issue random variable for a fully discrete \mathbf{n}-year endowment insurance of 1 on (x) with premium $P_{x: \bar{n} \mid}$. Given: (i) ${ }^{2} A_{x: \bar{n} \mid}=0.1774$. (ii) $P_{x: \bar{n} \mid} / d=0.5850$. Find $\operatorname{Var}[L]$.

Solution: directly use the formula

$$
\operatorname{Var}[L]=\left[1+\frac{P_{x: \bar{n} \mid}}{d}\right]^{2} \cdot\left[{ }^{2} A_{x: \bar{n} \mid}-A_{x: \bar{n} \mid}^{2}\right]=0.103
$$

we still need to find $A_{x: \bar{n} \mid}$: by the equivalence principle again

$$
\frac{P_{x: \bar{n} \mid}}{d}=\frac{A_{x: \bar{n} \mid}}{1-A_{x: \bar{n} \mid}} .
$$

(solve $A_{x: \bar{n} \mid}=0.3691$)

Percentile Premiums

Example

Consider a fully continuous whole life insurance of 1000 on (x), whose future lifetime T_{x} has the density

$$
f_{x}(t)=\frac{t}{1250}, \quad 0 \leq t \leq 50
$$

Assume $\delta=0.05$.
(1) If the premium rate is 10 per annum, calculate $E[0 L]$ and $P\left({ }_{0} L>0\right)$.
(2) What annual premium should the insurer charee so that he will make a profit with 50% probability?

Percentile Premiums

Solution.

$$
E(0 L)=1000 \bar{A}_{x}-10 \bar{a}_{x}=73.678
$$

where \bar{A}_{x} can be computed by

$$
\bar{A}_{x}=E\left[e^{-0.05 T_{x}}\right]=\int_{0}^{50} e^{-0.05} \frac{t}{1250} d t=0.2280648
$$

and

$$
\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}=15.438704
$$

Percentile Premiums

$$
\begin{aligned}
P[0 L>0] & =P\left[e^{-\delta T_{x}}-\frac{\pi}{S \delta+\pi}>0\right] \\
& =P\left[T_{x}<-\frac{1}{\delta} \ln \left(\frac{\pi}{S \delta+\pi}\right)\right] \\
& =F_{x}(35.8352)=0.5137
\end{aligned}
$$

- Make profit $={ }_{0} L \leq 0$. Find premium rate such that $P\left({ }_{0} L \leq 0\right)=0.5$.

$$
\begin{aligned}
P\left[T_{x}<-20 \ln \left(\frac{\pi}{50+\pi}\right)\right] & =0.5 \\
400\left[\ln \left(\frac{\pi}{50+\pi}\right)\right]^{2} / 2500 & =0.5
\end{aligned}
$$

Solve $\pi=10.2928$.

Portfolio percentile premium principle: Assume there are N iid future loss random variable $L_{0, i}$. Define

$$
L=\sum L_{0, i} .
$$

Then it is approximated normal distribution by the central limit theorem. And

$$
P[L<0]=\alpha
$$

is easy to compute.

Gross Premium

- Net future loss (exclude expenses):

$$
L_{0}^{n}=\mathrm{PV} \text { of benefit outgo }-\mathrm{PV} \text { of net premium income }
$$

- Gross future loss (include expenses):

$$
\begin{aligned}
L_{0}^{g}=P V \text { of benefit outgo } & +\mathrm{PV} \text { of expenses } \\
& -P V \text { of net premium income }
\end{aligned}
$$

- Equivalent principle:

$$
E\left[L_{0}^{g}\right]=0
$$

EPV of benefits + EPV of expenses $=$ EPV gross premiums

Gross Premium

Example (from lecture note, example 1)

A whole life insurance policy for $\$ 1,000$ is sold to (65). Pricing basis is the Illustrative Life Table with interest at 6\%. Expenses are as follows:
(1) Fixed cost of 2 per year (including year 1); plus
(2) Variable cost of 6% of gross premium.

Find net premium for the insurance as well as gross premium necessary to cover expenses.

Compute the net premium:

$$
P=1000 \frac{A_{65}}{\ddot{a}_{65}} \approx 44.44
$$

Gross Premium

Example (from lecture note, example 1)

A whole life insurance policy for $\$ 1,000$ is sold to (65). Pricing basis is the Illustrative Life Table with interest at 6%. Expenses are as follows:
(1) Fixed cost of 2 per year (including year 1); plus
(2) Variable cost of 6% of gross premium.

Compute the gross premium:

$$
\begin{gathered}
\underbrace{E P V \text { of benefits }}_{1000 A_{65}}+\underbrace{E P V \text { of expenses }}_{(2+0.06 G) \ddot{a}_{65}}=\underbrace{E P V \text { of gross premiums }}_{G \ddot{a}_{65}} \\
G=\frac{1000 A_{65}+2 \ddot{a}_{65}}{0.94 \ddot{a}_{65}} \approx 49.40
\end{gathered}
$$

(Important: compute expenses)

Gross Premium

Example ($\# 9$ in Gross premium HW)

For a fully-discrete 5-payment, 10-year deferred, 20-year term insurance of 1000 on (30) you are given the following expenses:
(1) Expenses are paid at the beginning of the policy year.
(2) Gross premium is determined using the equivalence principle.

Expense type	Year 1		Year 2-10	
	\% Premium	Per policy	\% Premium	Per policy
Taxes	5	0	5	0
Commission	25	0	10	0
Policy Maintenance	0	20	0	10

Find G, assuming ILT at 6%.

Gross Premium

Expense type	Year 1		Year 2-10	
	\% Premium	Per policy	\% Premium	Per policy
Taxes	5	0	5	0
Commission	25	0	10	0
Policy Maintenance	0	20	0	10

Find expenses:
Expenses on Taxes $=G \cdot 0.05 \cdot a_{30: 5}$
Expenses on Commission $=G \cdot 0.15+G \cdot 0.1 \cdot a_{30: 5}$
Exp. on Policy Maint. $=10 \ddot{a}_{30: \overline{10} \mid}+10$
(Need to know the period of each expenses)

Gross Premium

Use Equivalent Principal:
$\underbrace{\text { EPV of benefits }}_{1000_{10} E_{30} A_{40: \overline{20}}^{1}}+\underbrace{\text { EPV of expenses }}_{(\star)}=\underbrace{\text { EPV premiums }}_{G \ddot{a}_{30: 5}}$

$$
(\star)=0.05 G \cdot a_{30: 5}+0.15 G+0.1 G \cdot a_{30: \overline{5} \mid}+10 \ddot{a}_{30: \overline{10} \mid}+10
$$

Gross Premium

Example (From lecture note, example 3)

A 3-year policy has the following expenses

	First Year	Renewal
$\%$ of Premium	50%	10%
Face amount	$\$ 10$ per $\$ 1,000$	$\$ 1$ per $\$ 1,000$
Per policy	$\$ 25$	$\$ 5$
Settlement Expense	$\$ 10$ per policy plus $\$ 1$ per $\$ 1,000$ face amount	

Find the APV of each expenses.
Settlement Expense (assume face amount is 1000):

$$
(10+1) A_{x: \overline{3} \mid}^{1}
$$

Outline

(1) Survival Model

(2) Life Table
(3) Annuities
(4) Premium
(5) Policy Value/Reserves

Reserves

t-th Year Terminal Reserve ${ }_{t} V_{x}$:

$$
\begin{aligned}
{ }_{t} V_{x}= & \text { APV future insurance benefits from age }(x+t) \\
& - \text { APV future benefit premiums from age }(x+t)
\end{aligned}
$$

Discrete case:

$$
{ }_{t} V_{x}=A_{x+t}-P_{x} \ddot{a}_{x+t}
$$

Continuous case:

$$
{ }_{t} \overline{\bar{x}}_{x}=\bar{A}_{x+t}-\bar{P}_{x} \bar{a}_{x+t}
$$

Reserves

Example (\# 1 in HW)

Demonstrate the equivalence of the following, all of which are definitions of ${ }_{t} V_{x}$:
(1) $A_{x+t}-P_{x} \ddot{a}_{x+t}$
(2) $1-\frac{\ddot{\partial}_{x+t}}{\tilde{a}_{x}}$
(3) $\frac{P\left(A_{x+t}\right)-P\left(A_{x}\right)}{P\left(A_{x+t}\right)+d}$
(9) $\frac{A_{x+t}-A_{x}}{1-A_{x}}$

Reserves

Important formula:

$$
\begin{aligned}
P & =\frac{A}{a} \\
\ddot{a} & =\frac{1-A}{d}
\end{aligned}
$$

- 1) $\Longleftrightarrow 2$)

$$
\begin{aligned}
{ }_{t} V_{x} & =A_{x+t}-P_{x} \ddot{a}_{x+t} \\
& =1-d \ddot{a}_{x+t}-\left(\frac{1}{\ddot{a}_{x}}-d\right) \ddot{a}_{x+t} \\
& =1-\frac{\ddot{a}_{x+t}}{a_{t}}
\end{aligned}
$$

Reserves

- 2) $\Longleftrightarrow 3)$

$$
1-\frac{\ddot{a}_{x+t}}{a_{t}}=1-\frac{P\left(A_{x}\right)+d}{P\left(A_{x+t}\right)+d}=\frac{P\left(A_{x+t}\right)-P\left(A_{x}\right)}{P\left(A_{x+t}\right)+d}
$$

- 3) $\Longleftrightarrow 4$)

$$
\begin{aligned}
\frac{P\left(A_{x+t}\right)-P\left(A_{x}\right)}{P\left(A_{x+t}\right)+d} & =\ldots(\text { on board }) \\
& =\frac{A_{x+t}-A_{x}}{1-A_{x}}
\end{aligned}
$$

Reserves

Example

Demonstrate the equivalence of the following, all of which are definitions of ${ }_{t} V_{x}$:
(1) $A_{x+t}-P_{x} \ddot{x}_{x+t}$
(2) $1-\frac{\ddot{\partial}_{x+t}}{\tilde{a}_{x}}$
(3) $\frac{P\left(A_{x+t}\right)-P\left(A_{x}\right)}{P\left(A_{x+t}\right)+d}$
(9) $\frac{A_{x+t}-A_{x}}{1-A_{x}}$

Pg 18. It also works for other types of insurance (n-term, continuous, etc.)

Reserves

n-year policy value for an h-pay, Whole Life policy issued to (x)

$$
{ }^{h}{ }_{t} V_{x}
$$

Example

Given $P_{x}=0.01212,{ }^{20} P_{x}=0.01508, P_{x: 10}=0.06942$, and ${ }_{10} V_{x}=0.11430$. Calculate ${ }^{20}{ }_{10} V_{x}$

