
Notes on Reinforcement Learning
Updated: January 15, 2020

Contents

1 Markov Decision Process (MDP) 2
1.1 Markov Decision Process . 3
1.2 Bellman Equation . 4

2 Dynamic Programming (DP) 7
2.1 Prediction: Policy Evaluation . 7
2.2 Control: Policy Iteration . 8
2.3 Control: Value Iteration . 9

3 Model-Free Prediction 10
3.1 Monte-Carlo Policy Evaluation . 10
3.2 Temporal Difference (TD) Prediction . 11
3.3 Comparison: MC vs. TD . 12

4 Model-Free Control 14
4.1 On-Policy Monte-Carlo Control . 14
4.2 On-Policy TD Control . 15
4.3 Applications of Importance Sampling in Off-Policy Learning 16
4.4 Q-learning . 17

5 Function Approximation 19
5.1 Prediction with Linear Approximation . 19
5.2 Control with Linear Approximation . 20

6 Policy Gradient 24
6.1 Policy Gradient Theorem . 24
6.2 REINFORCE: Monte Carlo Policy Gradient . 27
6.3 Actor-Critic Policy Gradient . 28

A Importance Sampling 29

B Dynamical Systems 35

1

1 Markov Decision Process (MDP)

Markov decision process is one of the most important part in reinforcement learning. In this note, we
only consider the fully observable Markov decision process with finite discrete states, with finite discrete
actions, and in discrete time steps.

Reinforcement Learning

“A RL agent interacts with an environment over time. At each time step t, the agent receives
a state st in a state space S and selects an action at from an action space A, following a policy
π(at|st), which is the agent’s behavior, i.e., a mapping from state st to actions at, receives
a scalar reward rt, and transitions to the next state st+1, according to the environment
dynamics, or model, for reward functionR(s, a) and state transition probability P(st+1|st, at)
respectively. In an episodic problem, this process continues until the agent reaches a terminal
state and then it restarts. The return Rt =

∑∞
k=0 γ

krt+k is the discounted, accumulated
reward with the discount factor γ ∈ (0, 1]. The agent aims to maximize the expectation of
such long term return from each state . . . ”[Li, 2018]

Notations

• State space S. Every element in S is called a state. The random process {St} represents the state
at time t.

• Action space A. Every element in A is called an action. The random process {At} represents the
action taken by agent at time t; sometimes, it is also called the control process. We assume {At}
is adapted w.r.t. the filtration generated by {St}.

• Reward R : S × A → R. Reward is a deterministic function used to measure how well agent is
doing by taking action a in state s; the random process {Rt} represents the reward received by
agent at time t. The reward process is stochastic. Moreover, we assume for all t, Rt ≤ R for some
R <∞.

• History H. The history Ht is defined as all information no later than time t.

Agent The goal of agent is to gather rewards based on the received information from the environment;
for example, we expect the behavior of an agent will maximize the expected, discounted, accumulative
reward in the future. An RL agent may include one or more of these components: policy, value function,
or model.

• A policy fully defines the agent’s behavior.

Definition 1.1 (Policy). A deterministic policy π is a map from S to A,

π : s 7→ π(s).

A stochastic policy π is a distribution over actions A given states,

π(a|s) = P(At = a | St = s).

• The value function is a prediction of future reward; it is used to evaluate the goodness/badness of
states.

Definition 1.2 (Value function). A return from time-step t with the discount γ ∈ [0, 1] is

Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1.

A state-value function vπ : S → R w.r.t. π is defined as

vπ(s) := Eπ[Gt | St = s]

2

A action-value function qπ : S ×A → R w.r.t. π is defined as

qπ(s, a) := Eπ[Gt | St = s,At = a]

The optimal state-value function v∗ : S → R is defined as

v∗(s) := max
π

vπ(s).

The optimal action-value function q∗ : S ×A → R is defined as

q∗(s, a) := max
π

qπ(s, a).

Remark. Note that the value function can also be considered as a function of policy π. Therefore,
we can define the optimal policy as the policy maximizing the value function.

Definition 1.3 (Optimal Policy). A policy π∗ is optimal in D, if for any policy π ∈ D and for all
s ∈ S,

vπ∗(s) ≥ vπ(s).

• A model predicts what the environment will do next.

Definition 1.4 (Model). P is defined as the distribution of next step,

Pass′ = P [St+1 = s′ | St = s,At = a] .

R is defined as the next expected reward,

Ras = E[Rt+1 | St = s,At = a].

Probability Review A random process {St}t∈N with a finite state space S is called a Markov process
if for every s, s1, . . . , st ∈ S,

P(St+1 = s | S1 = s1, . . . , St = st) = P(St+1 = s | St = st);

or equivalently, it could be defined relative to a filtration F ,

E(f(St+1) | Ft) = E(f(St+1) | St)

for any measurable function f : S → R.
Given a Markov process {St}t∈N, the state transition probability from s to s′ is written as

Pss′ = P (St+1 = s′ | St = s) ;

It forms the state transition matrix

P =

P11 . . . P1n

...
Pn1 . . . Pnn

 .

1.1 Markov Decision Process

Definition 1.5. A Markov Reward process is a four tuple 〈S,P,R, γ〉:

• A finite state space S.

• A transition matrix P; that is,

Pss′ = P (St+1 = s′ | St = s) .

3

• A reward function R : S → R defined as

R : s 7→ E[Rt+1 | St = s].

where Rt+1 is the reward at time t+ 1.

• A discount factor γ ∈ [0, 1].

A Markov decision process is a five tuple 〈S,A,P,R, γ〉:

• A finite state space S.

• A finite action space A.

• A transition matrix P; that is,

Pass′ = P (St+1 = s′ | St = s,At = a) .

• A reward function R : S ×A → R defined as

R : (s, a) 7→ E[Rt+1 | St = s,At = a].

where Rt+1 is the reward at time t+ 1.

• A discount factor γ ∈ [0, 1].

Example 1.6 (Policies in MDP). Given a MDP 〈S,A,P,R, γ〉 with policy π, the agent’s action will be
leaded as follow:

1) Start from time t with an initial state St = s.

2) Take an action based on the policy: At ∼ π(·|St = s).

3) Compute the reward: (s, a) 7→ R(s, a).

4) Move to the next state based on the transition kernel: St+1 ∼ P(· | St = s,At = a).

1.2 Bellman Equation

Theorem 1.7 (Bellman Expectation Equation). The state-value function can be decomposed into the
sum of immediate reward and discounted value of successor state,

vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s].

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s,At = a].

Proof. Directly by the definition of vπ(s):

vπ(s) = Eπ[Rt+1 + γ

∞∑
k=1

γk−1Rt+k+1 | St = s]

= Eπ

[
Rt+1 + γEπ[

∞∑
k=1

γk−1Rt+k+1 | St+1]

∣∣∣∣∣St = s

]
= Eπ[Rt+1 + γvπ(St+1) | St = s]

The action-value case is omitted.

Remark. There are two other equivalent representations of Bellman expectation equation,

4

1) The Bellman expectation equation can be written as the matrix form as

qπ = Rπ + γPπqπ

with direct solution

qπ = (I − γPπ)−1Rπ.

2) Or we can write it more explicitly,

qπ(s, a) = Rπ(s, a) + γ
∑
s′∈S
Pass′qπ(s′, a).

The following result gives the relation between the state and action value function.

Proposition 1.8. Given a MDP 〈S,A,P,R, γ〉 with policy π, we always have

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a);

qπ(s, a) = Rπ(s, a) + γ
∑
s′∈S
Pass′vπ (s′) .

Proof. By definition,

vπ(s) = Eπ [Gt | St = s]

=
∑
a

Eπ [Gt | St = s,At = a]P(At = a | St = s)

=
∑
a

π(a|s)qπ(s, a)

Then by the Bellman expectation equation,

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s,At = a]

= Eπ[Rt+1 + γ

(∑
s′∈S

qπ(s′, At+1)Pass′

)
| St = s,At = a]

= Eπ[Rt+1 + γ

(∑
s′∈S

vπ(s′)Pass′

)
| St = s,At = a]

= Rπ(s, a) + γ
∑
s′∈S
Pass′vπ (s′) .

Theorem 1.9 (Bellman Optimality Equation). Let v∗, q∗ be the optimal state-value function and the
optimal action-value function, then

v∗(s) = max
a

q∗(s, a)

q∗(s, a) = Ras + γ
∑
s′∈S
Pass′v∗(s′).

Remark. We can also write it as below:

v∗(s) = max
a

[
Ras + γ

∑
s′∈S
Pass′v∗(s′)

]
;

q∗(s, a) = Ras + γ
∑
s′∈S
Pass′ max

a′
q∗(s

′, a′).

5

This form gives us an anther perspective of the optimal value function; if we define an operator

L : v 7→ max
a

[
Ras + γ

∑
s′∈S
Pass′v(s′)

]
,

then v∗ is a stationary point of this operator (that is, Lv∗ = v∗). The existence of optimal value function
will be immediately implied by the contraction of L.

6

2 Dynamic Programming (DP)

Assume the MDP 〈S,A,P,R, γ〉 is known with γ ∈ (0, 1).

Dynamic Programming A method for solving complex problems by breaking them down into sub-
problems; generally, it requires two properties to apply this method:

• Optimal substructure: an optimal solution can be constructed from optimal solutions of its sub-
problems.

• Overlapping subproblems: subproblems recur many times; solutions can be cached and reused.

Analysis Review Let X be a vector space. ‖ · ‖ : X → [0,+∞) is called a norm on X if it satisfies

◦ Subadditivity; ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ X.

◦ Absolutely homogeneous; ‖av‖ = |a|‖v‖ for all a ∈ R and v ∈ X.

◦ If ‖v‖ = 0, then v = 0.

A norm naturally defines a metric on the vector space X. If the topology induced by this metric is
complete, then we call X a Banach space.

Example. Given a finite set S, let X be all bounded functional on S. Then

‖v‖ := max
x∈S
|v(x)|

defines a norm on X; moreover, X is a Banach space with this norm.

An operator T : X → X is called a γ-contraction if there exists γ ∈ [0, 1) such that

‖Tu− Tv‖ ≤ γ‖u− v‖.

Theorem (Banach Fixed-Point Theorem). Let X be a Banach space with a contraction T : X → X.
Then T admits a unique fixed-point v∗ (i.e. Tv∗ = v∗); moreover, for any v ∈ X, the sequence {Tnv}n∈N
converges to v∗.

Sketch of Proof. Let vn := Tnv. Notice that {vn} is a Cauchy sequence; let vn → v∗. Then

lim
n→∞

vn = lim
n→∞

T (vn−1) = T (v∗)

by the continuity of T .

2.1 Prediction: Policy Evaluation

Recall that given a policy π, we define the state value function as

vπ(s) := Eπ[Gt | St = s]

where Gt :=
∑∞
k=0 γ

kRt+k+1 is the discounted return. The algorithm used to evaluate the map π 7→ vπ
is called a policy evaluation.

In this subsection, we will give an iterative method of policy evaluation. Let’s start from the Bellman
expectation equation

vπ = Rπ + γPπvπ

where vπ is the state value function given a policy π. It naturally defines the Bellman expectation
operator

Tπ : v 7→ Rπ + γPπv.

7

Theorem 2.1. Tπ is a γ-contraction.

Proof. The norm of Pπ is defined as the operator norm.

‖Tπ(u)− Tπ(v)‖ = ‖(Rπ + γPπu)− (Rπ + γPπv)‖
= ‖γPπ(u− v)‖
≤ γ ‖Pπ‖ ‖u− v‖
≤ γ‖u− v‖

By Banach fixed-point theorem, an algorithm is naturally given:

1) Start from the value function vn.

2) Compute vn+1 ← Rπ + γPπvn.

3) Go back to the first step.

Note: Reminder that there is a naive method of policy evaluation by directly solving the Bellman
expectation equation,

vπ = (I − γPπ)−1Rπ.
Which one is better? (The time complexity of computing matrix inverse by Gaussian elimination is
about O(n3) while Tnv linearly converges to vπ.)

2.2 Control: Policy Iteration

Now we consider the control problem; that is, we aim to find the optimal policy π∗. The following theorem
gives a greedy method to find a better policy, such kind of algorithms are called policy improvement.

Theorem 2.2. For a deterministic policy a = π(s) and the corresponding action state-value function
qπ, define a new policy π′ as follow

π′ : s 7→ arg max
a∈A

qπ(s, a);

then we have π′ ≥ π.

Proof. It suffices to show that vπ ≤ vπ′ .

vπ(s) ≤ qπ (s, π′(s)) = Eπ′ [Rt+1 + γvπ (St+1) |St = s]

≤ Eπ′ [Rt+1 + γqπ (St+1, π
′ (St+1)) |St = s]

≤ Eπ′
[
Rt+1 + γRt+2 + γ2qπ (St+2, π

′ (St+2)) |St = s
]

≤ Eπ′ [Rt+1 + γRt+2 + . . . |St = s] = vπ′(s)

Combine it with the policy evaluation; then we get an algorithm to find the optimal policy:

Input: MDP 〈S,A,R,P, γ〉
Output: Optimal policy π∗
Set initial policy π;
while not converged do

v ← vπ (policy evaluation);
q ← R+ γPv;
π ← arg maxa∈A qπ(s, a) (policy improvement);

end
Algorithm 1: Policy Iteration

8

If the policy improvement stops (i.e. π′ = π), we will have

qπ(s, π′(s)) = qπ(s, π(s)) = vπ(s).

And by the definition of π′,

qπ(s, π′(s)) = max
a∈A

qπ(s, a).

Then we get
vπ = max

a∈A
qπ(s, a).

By the remark part of Theorem 1.9, vπ is the optimal value function.

2.3 Control: Value Iteration

Now we introduce another method to find the optimal policy π∗. Recall that we have the Bellman
optimality equation

v∗(s) = max
a∈A

[
Ras + γ

∑
s′∈S
Pass′v∗(s′)

]
;

it naturally defines the Bellman optimality backup operator

T ∗ : v 7→ max
a∈A

[Ra + γPav].

Theorem 2.3. T ∗ is a γ-contraction.

Proof. Without loss of generality, fix s ∈ S such that T ∗v(s) ≥ T ∗u(s). Define

as∗ := arg max
a∈A

[
Ras + γ

∑
s′∈S
Pass′v∗(s′)

]
Then

T ∗v(s)− T ∗u(s) ≤

[
R(s, as∗) + γ

∑
s′∈S
Pa

s
∗
ss′v(s′)

]
−

[
R(s, as∗) + γ

∑
s′∈S
Pa

s
∗
ss′u(s′)

]
= γ

∑
s′∈S
Pa

s
∗
ss′ [v(s′)− u(s′)]

≤ γ‖v − u‖.

Therefore, for all s ∈ S,
|T ∗v(s)− T ∗u(s)| ≤ γ‖v − u‖;

it implies ‖T ∗v − T ∗u‖ ≤ γ‖v − u‖.

Notice that we can apply an iterative method to find the optimal value function v∗. Then we can find
the corresponding policy π∗ by

π∗(s) = arg max
a∈A

q∗(s, a)

where q∗(s, a) = Ras + γ
∑
s′∈S Pass′v∗(s′). Now we get the following algorithm:

Input: MDP 〈S,A,R,P, γ〉
Output: Optimal policy π∗
Set initial value function v;
while not converged do

v ← maxa∈A[Ra + γPav];
end
q ← R+ γPv;
π ← arg maxa∈A qπ(s, a);

Algorithm 2: Value Iteration

9

3 Model-Free Prediction

Recall that the value function is defined as

vπ(s) = Eπ [Gt | St = s]

We have two methods to find vπ when the policy π is given:

1) Directly solve the Bellman expectation equation: vπ = (I − γPπ)−1Rπ.

2) Iterative policy evaluation: vn+1 ← Rπ + γPπvn; finally, vn → vπ.

However, we must know the reward R and the transition kernel P. In this section, we will introduce two
methods to estimate the value function vπ when the MDP 〈S,A,P,R, γ〉 is not known.

Probability Review

Theorem (Strong Law of Large Numbers and Its Convergence Rate). Let X1, . . . , Xn
iid∼ X with µ :=

E|X| <∞, then
1

n
(X1 +X2 + · · ·+Xn)

a.s.−−→ µ

as n→∞. Moreover, if the variance σ2 := VarX <∞, then for every ε > 0,

lim sup
n→∞

[
1

n

n∑
i=1

Xi − µ
σ

] ·
√
n√

2 log log n
= 1. (1)

Theorem (Central Limit Theorem and Its Convergence Rate). Let X1, . . . , Xn
iid∼ X with µ := E|X| <

∞ and σ2 = VarXi <∞, then

[
1

n
(X1 +X2 + · · ·+Xn)− µ] ·

√
n

D−−→ N(0, σ2)

as n→∞. Moreover, if E|X|3 <∞, then

‖Fn(x)− φ(x)‖∞ ·
√
n ≤ CE|X|3

σ3
· 1√

n
(2)

3.1 Monte-Carlo Policy Evaluation

Key idea: we use the empirical mean instead of the expected return. In Example 1.6, we start from
s ∈ S and generate an episode {S1, A1, R2, S2, A2, . . . , Sk}. This method could be used to estimate the
value function vπ(s) as follow:

Input: Policy π, a state s ∈ S
Output: State value function V (s)
Set the increment counter N(s)← 0;
Set the increment total return S(s)← 0;
while N(s) is not large enough do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk};
t← arg min{t | St = s} ;
% Update only for the First Visit ;
Gt ← discounted accumulated reward;
N(s)← N(s) + 1;
S(s)← S(s) +Gt;

end
V (s)← S(s)/N(s).

Algorithm 3:
::::::::
First-visit MC Policy Evaluation

10

Remark. With mild modification, we can use Monte Carlo method to estimate the state-action value
function qπ. We denote the estimator as Q.

The following result just says that the algorithm above is correct.

Theorem 3.1. For the first-visit MC policy evaluation, V (s) converges to vπ(s).

Sketch of Proof. It is easy to notice that (1) Each Gt is iid. (2) E|Gt| <∞. By the law of large numbers,
V (s)→ vπ(s) as N(s) tends to infinity.

Remark. Also, “...the standard deviation of its error falls as 1/
√
n...”; here, 1/

√
n is the order of standard

deviation in the CLT rather than the convergence rate of SLLN (1) neither the convergence rate of CLT
(2). In Monte Carlo, we mainly focus on the standard deviation of our estimates; it is the rate of
convergence in probability.

We also have the following every-visit MC algorithm; the most main different part is that the discounted
rewards are not independent anymore.

Input: Policy π, a state s ∈ S
Output: State value function V (s)
Set the increment counter N(s)← 0;
Set the increment total return S(s)← 0;
while N(s) is not large enough do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk};
for t in {1, 2, . . . , k} do

if St = s then
% Update for Every Visit at state s;
Gt ← discounted accumulated reward;
N(s)← N(s) + 1;
S(s)← S(s) +Gt;

end

end

end
V (s)← S(s)/N(s).

Algorithm 4:
:::::::::
Every-visit MC Policy Evaluation

Theorem 3.2. For the every-visit MC policy evaluation, V (s) converges to vπ(s).

Proof. Omitted.

3.2 Temporal Difference (TD) Prediction

Temporal difference (TD) learning plays an importance role in reinforcement learning; it includes a large
families of algorithms, including SARSA and Q-learning. In this section, we will introduce the most
basic TD algorithm, TD(0).
Recall the Bellman expectation equation

vπ(s) = Eπ [Gt|St = s] (MC)

= Eπ

[∞∑
k=0

γkRt+k+1|St = s

]

= Eπ

[
Rt+1 + γ

∞∑
k=0

γkRt+k+2|St = s

]
= Eπ [Rt+1 + γvπ (St+1) |St = s] . (DP)

11

The Monte Carlo method estimates the expectation in (MC); it is model-free, but computing Gt requires
the information of the whole sequence. The dynamic programming method iteratively estimates vπ(St+1)
in (DP); it doesn’t require the episode to be terminated, but requires the MDP elements. The temporal
difference (TD) learning can overcome both disadvantages: it is model-free, and it doesn’t need to
generate a completed sequence. The key approximation is

Gt :=

∞∑
k=0

γkRt+k+1

= Rt+1 + γGt+1

≈ Rt+1 + γV (St+1)

Input: Policy π
Output: State value function V
Initialize V (s) for all s ∈ S;
Initialize state S;
for each step of episode do

Take action A ∼ π(·|S); observe R and next state S′;
V (S′)← V (S) + α(R+ γV (S′)

::::::::::
− V (S));

S ← S′;

end
Algorithm 5: TD Learning, TD(0)

Definition 3.3. In the algorithm above,

• R+ γV (S′) is called the TD target.

• R+ γV (S′)− V (S) is called the TD error.

3.3 Comparison: MC vs. TD

• Online learning.

– TD can learn without the final outcome; works in continuing (non-terminating) environments.

– MC can only learn from complete sequences; works for episodic (terminating) environments.

• Variance-bias trade-off.

– TD target has low variance, some bias.

Good convergence properties (even with function approximation); not very sensitive to initial
value.

– MD has high variance, zero bias.

More efficient than MC; TD(0) converges to vπ(s) but not always with function approximation;
more sensitive to initial value.

• Certainty equivalence.

• Markov environment.

– TD exploits Markov property; usually more efficient in Markov environments.

– MC doesn’t exploit Markov property; usually more effective in non-Markov environments.

12

n-Step Return Define the n-step return as

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n).

Then the n-step TD learning:

V (St)← V (St) + α
(
G

(n)
t − V (St)

)
.

Note that when n =∞, it becomes the MC method.

TD(λ) Define the λ-return as

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t .

Then the TD updates:

V (St)← V (St) + α
(
Gλt − V (St)

)
.

Note that it can only be computed from complete episodes.

13

4 Model-Free Control

Recall that we use the policy iteration method in Section 2 to find the optimal policy π∗; the policy
iteration repeats the following two steps:

1. Policy evaluation: given a policy π; compute the corresponding value function vπ.

2. Policy improvement: give a value function vπ; find a better policy π′.

However, both of methods above rely on knowing the MDP tuple 〈S,A,P,R, γ〉. In this section, we
give a model-free method to get the optimal policy by simply changing each model-based algorithm to
a model-free one.

Importance Sampling Importance sampling is a variance-reduction technique used to reduce the
variance (or relative error) of Monte Carlo estimation. The main difference is that we sample from the
importance measure instead of the original one.

On-Policy vs. Off-Policy First, we introduce two concepts: the target policy π which we want to
optimize, and the behavioral policy µ which generates the states, actions, and rewards. If π and µ are
same, then the task is called the on-policy learning. If π and µ are different, then the task is called the
off-policy learning.
In on-policy task, we hope our agent can play the game well by playing this game on itself, while in
off-policy learning, we hope our agent can play the game well by observing other player’s behavior.

4.1 On-Policy Monte-Carlo Control

In this subsection, we use the Monte Carlo method (see Algorithm 3 and Algorithm 4) to estimate the
value function; however, we cannot use the estimate of state value function V , because it is unavoidable
to use R and P to compute the policy π. Fortunately, we can make a mild modification to get the
estimate of state-action value function Q (see the Remark of Algorithm 3). This method has another
problem; if we keep using greedy method, some state-action pairs (s, a) may rarely occur. Therefore, we
need to introduce the ε-greedy method:

Definition 4.1 (ε-Greedy). For any ε ∈ [0, 1], define the ε-greedy policy w.r.t. Q(s, a) as

π(a|s) :=

{
ε/|A|+ 1− ε a∗ = arg maxa∈AQ(s, a)

ε/|A| o.w.
.

Theorem 4.2. For any ε-greedy policy π, the ε-greedy policy π′ with respect to qπ is an improvement,
that is,

vπ′(s) ≥ vπ(s).

Proof.

qπ (s, π′(s)) =
∑
a∈A

π′(a|s)qπ(s, a)

= ε/|A|
∑
a∈A

qπ(s, a) + (1− ε) max
a∈A

qπ(s, a)

≥ ε/|A|
∑
a∈A

qπ(s, a) + (1− ε)
∑
a∈A

π(a|s)− ε/|A|
1− ε

qπ(s, a)

=
∑
a∈A

π(a|s)qπ(s, a) = vπ(s)

Now our policy iteration becomes:

1. Policy evaluation: given any policy π; use Q as an estimator of the state-action value function qπ.

14

2. Policy improvement: ε-greedy policy improvement.

It is natural to ask if this algorithm converges to the optimal policy π∗.

Definition 4.3 (Greedy in the Limit with Infinite Exploration (GLIE)). A sequence of policy is called
GLIE if

• All state-action pairs are explored infinitely many times; that is

lim
k→∞

Nk(s, a) =∞.

• The policy converges on a greedy policy,

lim
k→∞

πk(a|s) = 1(a = arg max
a′∈A

Qk(s, a′)),

where Qk is learned action-value function.

Example 4.4. ε-greedy policy is GLIE if εk = 1
k .

Input:
Output: Optimal policy π∗
Set the increment counter N(s, a)← 0 for all (s, a) ∈ S ×A;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk};
for t in {1, 2, . . . , k} do

Gt ← discounted accumulated reward;
N(St, At)← N(St, At) + 1;

Q(St, At)← Q(St, At) + 1
N(St,At)

(Gt −Q(St, At));

end

ε← 1
n ;

π ← ε-greedy(Q);

end
Algorithm 6: GLIE Monte-Carlo Control

Theorem 4.5. GLIE Monte-Carlo control converges to the optimal action-value function,

Q(s, a)→ q∗(s, a).

4.2 On-Policy TD Control

Sarsa means state-action-reward-state-action. Reminder that the generalized policy iteration is:

1. Policy evaluation: given any policy π; use Q as an estimator of the state-action value function qπ.

2. Policy improvement: ε-greedy policy improvement.

Now we use TD prediction in the policy evaluation part.

15

Input: Parameters ε and α
Output: Optimal policy π∗
Initialize Q(s, a) for all (s, a) ∈ S ×A;
while not converged do

π ← ε-greedy(Q);
Initialize S and A;
for each step of episode do

Take action A; observe R and S′;
Generate A′ ∼ π(·|S′);
Q(S,A)← Q(S,A) + α [R+ γQ(S′, A′)−Q(S,A)];
S ← S′, A← A′;
Update α;
Update ε;

end

end
Algorithm 7: Sarsa

Theorem 4.6. Assume the following conditions are satisfied:

a) GLIE sequence of policies πt(a|s)

b) Robbins-Monro sequence of step-sizes αt:

∞∑
t=1

αt =∞,

∞∑
t=1

αt <∞.

Then SARSA converges to the optimal action-value function

4.3 Applications of Importance Sampling in Off-Policy Learning

In the off-policy setting, the behavior policy µ is different from the target policy π. Recall that if we fix
any s ∈ S, π(·|s) is a measure on A; and we want to maximize the discounted expected reward EπGt.
However, all of our samples are generated by another measure µ(·|s). The importance sampling is a
natural way to estimate the expectation w.r.t. the measure π by sampling from the measure µ. The key
relation is

EπX =

∫
Xdπ =

∫
X

dπ

dµ
dµ = Eµ(X · dπ

dµ
)

where dπ
dµ is a random variable called Radon-Nikodym derivative (see Appendix A for more details). So

we simply apply the relation above in the original algorithms.

Monte-Carlo Notice that the policy π induces a measure on A×A× . . .A:

P(At = at, At+1 = at+1, · · · , AT = aT | St = st)

=P(At = at | St = st)P(At+1 = at+1, ·, AT = aT | St = st, At = at)

=π(at|st)Patst,st+1
· P(At+1 = at+1, · · · , AT = aT | St+1 = st+1)

= . . .

=π(at|st) · π(at+1|st+1) . . . π(aT |sT) ·
∏
t

P

16

Similarly, µ induces a measure

Q(At = at, At+1 = at+1, · · · , AT = aT | St = st)

=µ(at|st) · µ(at+1|st+1) . . . µ(aT |sT) ·
∏
t

P

Then the importance ratio is

W =
π(at|st) · π(at+1|st+1) . . . π(aT |sT)

µ(at|st) · µ(at+1|st+1) . . . µ(aT |sT)
.

Temporal Difference Notice that π(·|S) and µ(·|S) are measure on A. The importance ratio is

W =
π(·|S)

µ(·|S)
.

We present the off-policy MC algorithm here as an example.

Input: Behavioral policy µ %assume µ can explore all possibilities
Output: Optimal policy π∗
Initialize Q as an estimator of action-value function;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , ST } using µ;
N(s, a)← 0 for all s ∈ S and a ∈ A;
S(s, a)← 0 for all s ∈ S and a ∈ A;
for each time t of generated episode do

Gt ← cumulative discounted return at time t;
Wt ← [π(at|st) · π(at+1|st+1) . . . π(aT |sT)] / [µ(at|st) · µ(at+1|st+1) . . . µ(aT |sT)];
N(St, At)← N(St, At) + 1;
S(St, At)← S(St, At) +Wt ·Gt;
Q(St, At)← S(St, At)/N(St, At);

end

end
π(s)← arg maxa∈AQ(s, a) for all s ∈ S;

Algorithm 8: Off-Policy Every-Visit MC Control

4.4 Q-learning

Now we introduce an off-policy learning algorithm which doesn’t require the importance sampling.

Input: Fixed policy π, the learning rate sequence αt
Output: Optimal policy π∗
Initialization;
while not converged do

Take action At+1 ∼ π(·|S); oberve Rt+1 and St+1;
Q(St, At)← Q(St, At) + αt [Rt+1 + γmaxaQ(St+1, a)−Q(St, At)];
t← t+ 1;

end
π∗ = arg maxa∈AQ;

Algorithm 9: Online Q-Learning

Remark. We will make several comments on the Q-learning:

• The algorithm introduced in this subsection is the most basic form of Q-learning; sometimes, it is
called Watkins’ Q-learning algorithm. It is first proposed in his PhD thesis [Watkins, 1989].

17

• When this algorithm converges, we can get the optimal Q-function. Because when converged,

Q∗(St, At) = Q∗(St, At) + α
[
Rt+1 + γmax

a′
Q∗(St+1, a

′)−Q∗(St, At)
]

where St+1 ∼ PAtSt,St+1
. Conditional on the past information:

Eπ [Q∗(St, At) | St = s,At = a] = Ras + γEπ
[
max
a′

Q∗(St+1, a
′) | St = s,At = a

]
= Ras + γ

∑
s′∈S
Pass′ max

a′
Q∗(s

′, a′)

It implies that

Q∗ = R+ γPmax
a

Q∗.

It means Q∗ is the solution of Bellman optimality equation.

Theorem 4.7. Suppose the policy π satisfies the Assumption 5.3 and the learning rate sequence satisfies
the Robbins-Monro conditions. Then Q-learning control converges to the optimal action-value function.

Remark. Since the action-value function can be represented as the linear combination of {1(s,a)}(s,a)∈S×A,
it would be a special case of linear approximation. We put off the proof to Section 5.

18

5 Function Approximation

Recall that in the dynamic programming, we use iterative policy evaluation to compute the value function
vπ; in the model-free setting, we apply the Monte Carlo or temporal difference method. However, there
are several problems when dealing with large MDPs:

• we cannot save the whole Q-function in memory;

• it would take a long time to visit all of state-action pairs.

In this section, we will introduce a solution for large MDPs. It is assumed that the value function could
be approximated by a parametric family of functions (of course, the parameter space is much smaller
than the state-action space). We mainly focus on the linear approximation.

Without loss of generality, we only present the linear approximation for the action-value function. It is
easy to generalize this case to the state-value function. Let φi : S × A → R for i ∈ {1, 2, . . . ,M} be
linearly independent. Then their linear combination

Φ := Span{φi}Mi=1

forms a closed convex set, so the projection operator ProjΦ is well-defined. Moreover, every point in the
space Φ with coordinate θ is denoted by

Qθ =

M∑
i=1

φi · θ(i) = φT θ.

5.1 Prediction with Linear Approximation

First, we assume the value function Q is known. We want to solve the following optimization problem:

min
θ∈RM

J(θ) := Eπ‖Qθ(S,A)−Q(S,A)‖2 (3)

We can apply the stochastic gradient method to find its minima.

θ ← θ − α

2
∇J(θ)

where

∇J(θ) = Eπ∇‖Qθ(S,A)−Q(S,A)‖2

= Eπ [2(Qθ −Q)∇Qθ]
= 2Eπ [(Qθ −Q)φ]

Therefore, our update becomes

θ ← θ − αEπ [(Qθ −Q)φ] (4)

Unfortunately, usually the value function is not given. We need to estimate the value function in the
SGD iteration above:

• Monte-Carlo. We estimate the value function using the discounted future return Gt. Then

θ ← θ − α [(Qθ −Gt)φ(St, At)] (5)

19

Input: Policy π, learning rate α
Output: Value function Qθ
Initialize θ;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk} using π;
for time step t in the generated episode do

θ ← θ − α [(Qθ(St, At)−Gt)φ(St, At)];
end

end
Algorithm 10: MC Policy Evaluation with Linear Approximation

• Temporal difference. We estimate the value function using the TD target:

θ ← θ − α [(Qθ − (Rt+1 + γQθ(St+1, At+1)))φ(St, At)] (6)

Input: Policy π, learning rate α
Output: Value function Qθ
Initialize θ;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk} using π;
for time step t in the generated episode do

θ ← θ − α [(Qθ −Rt+1 − γQθ(St+1, At+1))φ(St, At)];
end

end
Algorithm 11: TD(0) Policy Evaluation with Linear Approximation

Convergence Now let’s consider the asymptotic property of the algorithms above. The following
theorem gives the convergence of the Algorithm 10:

Theorem 5.1. Assume the stepsize sequence satisfies Robbins-Monro conditions. Then the Algorithm
10 converges to the global minima of optimization problem (3).

Proof. Since the objective function (3) is strongly convex. It suffices to show the SGD update is unbiased.

Eπ [(Qθ(St, At)−Gt)φ(St, At) | St, At] = (Qθ(St, At)− Eπ [Gt | St, At])φ(St, At)

= [Qθ(St, At)−Q(St, At)]φ(St, At)

Then we conclude the convergence by the traditional result in SGD theory.

Then we consider the convergence of TD method. The proof is more complicated since it is not directly
implied by the general result of SGD.

Theorem 5.2. Assume the stepsize sequence satisfies Robbins-Monro conditions. Then the Algorithm
11 converges to the global minima of optimization problem (3).

Proof. TOBE ADDED.

5.2 Control with Linear Approximation

On-policy control As in Section 2, we can use the policy iteration method to find the optimal policy:

1. Policy evaluation: Given π, compute the approximated value function Q ≈ qπ with value function
approximation (e.g. Algorithm 10 or Algorithm 11).

2. Policy improvement: ε-greedy policy improvement.

20

Off-policy control Now we consider the online Watkins’ Q-learning algorithm with linear approxi-
mation. We have seen the original version in Section 4 and the proof is deferred to here. The iteration
is

θt+1 = θt + αt ·
[
Rt+1 + γmax

a∈A
φT θt(St+1, a)− φT θt(St, At)

]
· φ(St, At)

Input: Fixed policy π, learning rate sequence αt
Output: Optimal policy π∗

Initialization;
while not converged do

Take action At+1 ∼ π(·|S); oberve Rt+1 and St+1;
θ ← θ − αt [(Qθ −Rt+1 − γmaxa∈AQθ(St+1, a))φ(St, At)];
t← t+ 1;

end
π∗ ← arg maxAQθ;

Algorithm 12: Online Q-learning with Linear Approximation

Now we show the convergence of Q-learning control sequence. First, we list several notations we will use
later:

• Let (S,A,P,R, γ) be the MDP tuple. Here we consider a more general case than our usual
definition. S ⊂ Rd is a compact set; A is still a finite set. {St}t∈N is generated by a fixed policy π.

• Let Q be the space of all action-value functions (or Q-functions).

• {φi}Mi=1 is linear independent and their spanned space is a ε-dense set for the space Q. Let

φ :=

φ1

φ2

...
φM

be the M × 1 vector. Moreover, we define

Σπ = Eπ
[
φφT

]
;

it is a M ×M matrix.

• Let a∗ = arg maxAQθ. Define

Σ∗π(θ) = Eπ
[
φ(S, a∗)φT (S, a∗)

]
;

it is a M ×M matrix.

Assumption 5.3. The following assumptions are used to make sure every state-action pair will be visited
infinite times:

• The state process {St} is uniformly ergodic with invariant measure µ.

• The fixed policy π satisfies π(s, a) > 0 for all a ∈ A and µ-almost all s ∈ S.

The following proof is adapted to our notations from [Melo et al., 2008].

Theorem 5.4. Suppose the policy π satisfies the Assumption 5.3; and for all θ ∈ RM ,

Σπ > γ2Σ∗π(θ); (7)

and the step-size sequence satisfies Robbins-Monro conditions. Then the Q-learning iteration defined in
Algorithm 12 converges almost surely.

21

Proof. #TODO

• #Lyapunov theorem: consider the non-autonomous case

• #Uniqueness: delete this part

The proof will be divided into three parts:

• The limit point of the Q-learning control iteration is the equilibrium point the following ODE:

θ̇ = Eπ
[
[R+ γmax

A
φT θ − φT θ] · φ

]
.

Fix two trajectories of ODE with different initial conditions: θ1(t) and θ2(t). Define

θ̃t := θ1(t)− θ2(t).

• We choose (x1, x2) 7→ ‖x1 − x2‖2 as the Lyapunov function candidate. It is obvious that it is
positive definite. And its derivative along the trajectory (θ1, θ2) is

d

dt
‖θ̃t‖2 = 2θ̃Tt ·

d

dt

(
θ1(t)− θ2(t)

)
= 2θ̃Tt · Eπ

[(
γmax
A

φT θ1 − φT θ1 − γmax
A

φT θ2 + φT θ2

)
· φ
]

= 2θ̃Tt · Eπ
[(
γ(max
A

φT θ1 −max
A

φT θ2)− φT θ̃t
)
· φ
]

= −2θ̃Tt
[
EπφφT

]
θ̃t + 2γ · θ̃Tt Eπ

[
(max
A

φT θ1 −max
A

φT θ2) · φ
]

= −2θ̃Tt Σπ θ̃t + 2γ · Eπ
[
θ̃Tt φ · (max

A
φT θ1 −max

A
φT θ2)

]
• It remains to show that d

dt‖θ̃‖
2 < 0 for all t (then x 7→ ‖x‖2 is the Lyapunov function).

◦ Let a∗1 = arg maxa∈A φ
T θ1 and a∗2 = arg maxa∈A φ

T θ2. Then

max
A

φT θ1 −max
A

φT θ2 = φT (s, a∗1)θ1 − φT (s, a∗2)θ2

= φT (s, a∗1)θ̃ + φT (s, a∗1)θ2 − φT (s, a∗2)θ2

≤ φT (s, a∗1)θ̃

where in the last step we notice that φT (s, a∗1)θ2 ≤ φT (s, a∗2)θ2 by the definition of a∗2. Simi-
larly, we have

max
A

φT θ2 −max
A

φT θ1 ≤ φT (s, a∗2)θ̃.

◦ Define S+
t := {(s, a) ∈ S ×A : θ̃Tt φ > 0} and S−t := {(s, a) ∈ S ×A : θ̃Tt φ < 0}. Then we have

Eπ
[
θ̃Tt φ · (max

A
φT θ1 −max

A
φT θ2)

]
=Eπ

[
1S+

t
· θ̃Tt φ · (max

A
φT θ1 −max

A
φT θ2)

]
+ Eπ

[
1S−t
· θ̃Tt φ · (max

A
φT θ1 −max

A
φT θ2)

]
≤Eπ

[
1S+

t
· θ̃Tt φ · θ̃Tt φ(s, a∗1)

]
+ Eπ

[
1S−t
· θ̃Tt φ · θ̃Tt φ(s, a∗2)

]
◦ Then by Cauchy–Schwarz inequality,

Eπ
[
1S+

t
· θ̃Tt φ · θ̃Tt φ(s, a∗1)

]
= Eπ

[(
1S+

t
· θ̃Tt φ

)
·
(
1S+

t
· θ̃Tt φ(s, a∗1)

)]
≤
√
Eπ
(
1S+

t
· θ̃Tt φ

)2 · Eπ(1S+
t
· θ̃Tt φ(s, a∗1)

)2
≤
√
θ̃Tt Σπ θ̃t · θ̃Tt Σ∗π(θ1)θ̃t

Similarly,

Eπ
[
1S−t
· θ̃Tt φ · θ̃Tt φ(s, a∗2)

]
≤
√
θ̃Tt Σπ θ̃t · θ̃Tt Σ∗π(θ2)θ̃t

22

◦ Finally, we apply our assumption (7), Σπ > γ2Σ∗π(θ):

d

dt
‖θ̃t‖2 ≤ −2θ̃Tt Σπ θ̃t + 2γ

√
θ̃Tt Σπ θ̃t · θ̃Tt Σ∗π(θ1)θ̃t + 2γ

√
θ̃Tt Σπ θ̃t · θ̃Tt Σ∗π(θ2)θ̃t

< −2θ̃Tt Σπ θ̃t + 2θ̃Tt Σπ θ̃t = 0.

Then the proof is completed. We just show that the Q-learning sequence has the unique limit point. It
is easy to see that when the algorithm terminates,

φφT θ∗ = [R+ γmax
A

φT θ∗] · φ.

Conditional on the current action-state pair (S,A),

φφT θ∗ = φ · [Rπ(S,A) + γPπ max
A

φT θ∗].

Since φφT is full-rank (by linear independence), we have

θ∗ = (φφT)−1φ · [Rπ(S,A) + γPπ max
A

φT θ∗]

Let T ∗ : Q 7→ Rπ + γPπ maxa∈AQ be the Bellman optimality operator (see Theorem 1.9). Multiple φ
on both side:

Qθ∗ = φT (φφT)−1φ · T ∗(Qθ∗).

Define ProjΦ := φT (φφT)−1φ. Note that ProjΦ : Q → Q is the projection operator; it maps any Q ∈ Q
to the nearest point on Φ := Span{φi}Mi=1. Particularly, if Φ = Q and {φi} forms a unit orthogonal basis,
then Qθ∗ is the solution of Bellman equation; so it induces the optimal policy.

Now let’s re-consider the omitted proof of Theorem 4.7.

Corollary 5.5. Suppose the policy π satisfies the Assumption 5.3 and the step-size sequence satisfies
Robbins-Monro conditions. Then the Q-learning control sequence given in Algorithm 9 converges to the
optimal action-value function.

Proof. It suffices to show that the look-up table basis satisfies the condition (7). Notice that Σπ is an
identity matrix and Σ∗π(θ) is similar to the identity matrix but some terms at the diagonal are zeros. So,
for every γ < 1, the equation (7) holds.
Then because the look-up table basis {1(s,a)}(s,a)∈S×A is a unit orthogonal basis and it spans the whole
space Q. By Theorem 5.4, the unique limit point satisfies the Bellman optimality equation. Proof
completed.

23

6 Policy Gradient

We have learned two methods to find the optimal policy: policy iteration and value iteration. Both
methods are required to compute the value function (value-based). In this section, we will introduce a
policy-based approach to find the optimal policy. Its main idea is similar to the function approximation:
assume the policy is in the parametric family {πθ}; and its performance can be represented as J(θ) (we
call it policy objective functions); we aim to maximize its performance by stochastic gradient ascent:

θt+1 ← θt + α∇̂J(θt)

where ∇̂J(θt) is a stochastic estimate of ∇J(θt). Here listed several choices of parametric family of
policies:

(1) Softmax policy:

πθ(a|s) ∝ eφ
T (s,a)θ.

(2) Gaussian policy:
a ∼ N(φT (s)θ, σ2).

(3) Direct parameterization:
πθ(a|s) ∈ ∆(A)|S|

where ∆(A)|S| is the simplex with length |S| and elements indexed by the set A.

Note that (1) and (3) contains all of stochastic policies so they are complete; (2) belongs to the restricted
parameterization family. And generally, J(θ) is not concave for the direct parameterization and softmax
parameterization. See Lemma 3.1 in [Agarwal et al., 2019] for an example.
Lastly, besides REINFORCE introduced in this section, there are many other policy gradient algorithms
in this field. See [Weng, 2018]1; it introduces 15+ related algorithms and their implementations.

6.1 Policy Gradient Theorem

Assume the distribution of initial state S0 is µ. The expected return of a policy π is defined as

Eπ[

∞∑
t=1

γtRt] = Eπ[

∞∑
t=1

γtEπ[Rt|At−1, St−1]]

= ES0∼µEπ[

∞∑
t=0

γtR(St, At) | S0].

We can use this as a measure to evaluate the performance of a policy π; define

J(θ) = ES0∼µEπθ [
∞∑
t=0

γtR(St, At) | S0]

where a policy is determined by its parameter θ, denoted by πθ. We maximize its performance using

θt+1 ← θt + α ∇J(θt).

The following theorem gives the explicit expression of ∇J(θ).

Theorem 6.1 (Policy Gradient Theorem). Let J(θ) be given as above. Then

∇J(θ) =
1

1− γ
ES0∼µEs∼dπθS0

Ea∼π(·|s)[∇θ log πθ(a|s)qπ(s, a) | S0].

1https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

24

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Proof. 2 Let τt := {S0, A0, . . . , St, At} be the trajectory up to time t. Then

EπR(St, At) =
∑
τt

Pπ(τt)R(st, at). (8)

where Pπ is a possibility measure on (S ×A)t induced by π (we have seen this trick in Section 4.3) and
R : S ×A → R is the reward in MDP. Fix the initial state S0. Now we compute the gradient of J(θ):

∇J(θ) = ∇Eπθ [
∞∑
t=0

γtR(St, At) | S0]

= ∇
∞∑
t=0

γtEπθ [R(St, At) | S0]

(8) = ∇
∞∑
t=0

γt
∑
τt

Pπθ (τt)R(st, at)

=

∞∑
t=0

γt
∑
τt

(
∇Pπθ (τt)

)
R(st, at)

=

∞∑
t=0

γt
∑
τt

(
∇ logPπθ (τt)

)
R(st, at)Pπθ (τt)

=

∞∑
t=0

γtEπθ [∇ logPπ(τt)R(St, At) | S0]

= Eπθ [
∞∑
t=0

γt∇ logPπ(τt)R(St, At) | S0]

Now we compute Pπ(τt):

Pπ(τt) := Pπ(S0 = s0, A0 = a0, . . . , St = st, At = at)

=

t−1∏
t′=0

(
πθ(at′ |st′)Pat′st′ ,st′+1

)
· πθ(at|st)

Then

∇θ logPπ(τt) =

t∑
t′=0

∇θ log πθ(at′ |st′)

where all P are gone since they do not rely on θ.

2The proof is from this note (link: http://katselis.web.engr.illinois.edu/ECE586/Lecture14.pdf). Our result is different
from David Silver’s slides but fortunately it is same as the setting in [Agarwal et al., 2019].

25

http://katselis.web.engr.illinois.edu/ECE586/Lecture14.pdf

Now plug it into ∇J(θ):

∇J(θ) = Eπθ [
∞∑
t=0

γt[

t∑
t′=0

∇θ log πθ(At′ |St′)]R(St, At) | S0]

= Eπθ [
∞∑
t=0

∑
t′:t≥t′

∇θ log πθ(At′ |St′)γtR(St, At) | S0]

(change order) = Eπ[

∞∑
t′=0

∑
t:t≥t′

∇θ log πθ(At′ |St′)γtR(St, At) | S0]

= Eπθ [
∞∑
t′=0

∇θ log πθ(At′ |St′)
∑
t≥t′

γtR(St, At)︸ ︷︷ ︸
Cond. on (St′ ,At′)...

| S0]

= Eπθ [
∞∑
t′=0

∇θ log πθ(At′ |St′)
∑
(s,a)

E[
∑
t≥t′

γtR(St, At) | St′ = s,At′ = a] · P(St′ = s,At′ = a | S0 = s)

︸ ︷︷ ︸
...get this.

| S0]

= Eπθ [
∞∑
t′=0

∇θ log πθ(At′ |St′)
∑
(s,a)

γt
′
qπ(s, a) · P(St′ = s,At′ = a | S0 = s) | S0]

= Eπθ [
∞∑
t′=0

∇θ log πθ(At′ |St′)γt
′
Eπ[qπ(St′ , At′)] | S0]

=

∞∑
t=0

Eπ
[
γt∇θ log πθ(At|St)qπ(St, At) | S0

]
We keep simplifying this formula.

∞∑
t=0

Eπθ
[
γt∇θ log πθ(At|St)qπ(St, At) | S0

]
=

∞∑
t=0

∑
s∈S

∑
a∈A

γt∇θ log πθ(a|s)qπ(s, a) · πθ(a|s) · P(St = s | S0)

=
∑
s∈S

∑
a∈A

∞∑
t=0

γt∇θ log πθ(a|s)qπ(s, a) · πθ(a|s) · P(St = s | S0)

=
∑
s∈S

∑
a∈A
∇θ log πθ(a|s)qπ(s, a) · πθ(a|s)

∞∑
t=0

γt · P(St = s | S0)

=
∑
s∈S

∞∑
t=0

γt · P(St = s | S0)
∑
a∈A
∇θ log πθ(a|s)qπ(s, a) · πθ(a|s)

Now we turn the fixed initial state S0 to be random. Then we get

∇J(θ) = ES0∼µ
∑
s

(∞∑
t=0

γt · P(St = s | S0)

)
Ea∼π(·|s)[∇θ log πθ(a|s)qπ(s, a) | S0]

=
1

1− γ
ES0∼µEs∼dπθS0

Ea∼π(·|s)[∇θ log πθ(a|s)qπ(s, a) | S0]

where we normalize
∑∞
t=0 γ

t · P(St = s | S0) as a distribution on S, dπθS0
.

It should be mentioned that there are other choices of policy objective functions (see David Silver’s slides).
Since the result is similar to the discounted reward case, we omit the calculation of their gradients and
just summary the result below:

26

Theorem 6.2. (Policy Gradient Theorem) Let J(θ) =
∑
s d

πθ (s)
∑
a π(a|s)Ras . Then

∇θJ(θ) =
∑
s

dπθ (s)
∑
a

π(a|s)∇θ log πθ(s, a)qπθ (s, a).

6.2 REINFORCE: Monte Carlo Policy Gradient

Based on the policy gradient theorem, we immediately get an algorithm. For each update, we use Monte
Carlo method to estimate ∇J(θ). The following pseudo-code from [Sutton and Barto, 2018] is written
for the case where dπθ is an atomic measure at the initial state.

Output: Optimal policy π∗

Initialize θ;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk} using πθ;
for time step t in the generated episode do

θ ← θ + α∇θ log πθ(St, At)Q
πθ
t ;

end

end
Algorithm 13: MC Policy Gradient (REINFORCE)

Remark. Notice that the action value function Qπθ is not known. Therefore, we cannot directly use the
algorithm above. Generally, we need to use a unbiased estimate of Qπθ take replacement of Qπθ .

Because the expectation of gradient update is exactly the true gradient. The convergence of this algorithm
is guaranteed with diminishing learning rate by the SGD theory; so the proof is omitted here.

Theorem 6.3. Assume the stepsize sequence satisfies Robbins-Monro conditions. Then the iteration
sequence in Algorithm 13 converges to a stationary point.

REINFORCE with Baseline Now we consider a more general algorithm, REINFORCE with base-
line. Let

J(θ) =

H∑
t=0

Eπ
[
γt∇θ log πθ(At|St) (qπ(St, At)− b(St)) | S0

]
where b(s) is an arbitrary baseline (it could be any function, even a random variable). Then the parameter
update (in the Algorithm 13) becomes

θt+1 ← θt + α (Gt − b(St))
∇θπθ(At, St)
πθ(St|St)

.

Output: Optimal policy π∗

Initialize θ;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk} using πθ;
for time step t in the generated episode do

θ ← θ + α (Gt − b(St))∇θ log πθ(At, St).;
end

end
Algorithm 14: REINFORCE with Baseline

27

6.3 Actor-Critic Policy Gradient

We use a critic to estimate the action-value function (Q-function) Qπθ . Assume the Q-function can be
represented using function approximation

Qw ≈ Qπθ .
Then our algorithm should include two steps:

• Critic: update the Q-function parameter w.

• Actor: update the policy parameter θ.

Now we have the actor-critic policy gradient algorithm:

Output: Optimal policy π∗

Initialize θ and w;
while not converged do

Generate an episode {S1, A1, R2, S2, A2, . . . , Sk} using πθ;
for time step t in the generated episode do

θ ← θ + α (Gt − b(St))∇θ log πθ(At, St).;
w ← w + β[Rt + γQw(St+1, At+1)−Qw(St, At)]φ(St, At);

end

end
Algorithm 15: Q Actor-Critic

Note that in the actor-critic algorithm, generally the update would be a biased estimate of the true
gradient. Fortunately, we have the following compatible function approximation theorem. It says
when the function approximation is chosen appropriately, our update is still unbiased.

Theorem 6.4 (Compatible Function Approximation Theorem). If the following two conditions are
satisfied

1) Value function approximation is compatible to the policy; that is,

∇wQw(s, a) = ∇θ log πθ(s, a).

2) Value function parameters w minimize the mean-squared error; that is,

ε = Eπθ (Qπθ (s, a)−Qw(s, a))2.

Then the policy gradient is exact; that is

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qw(s, a)].

Proof. 3 By condition (2), we have

∇wε = 0.

Then by the definition of ε and condition (1),

Eπθ (Qπθ (s, a)−Qw(s, a))∇wQw(s, a) = 0

Eπθ (Qπθ (s, a)−Qw(s, a))∇θ log πθ(s, a) = 0

Re-arrange it:

Eπθ [Qπθ (s, a)∇θ log πθ(s, a)] = Eπθ [Qw(s, a))∇θ log πθ(s, a)]

Then the proof is completed.

Remark. The condition (1) is a super strong condition. [Sutton et al., 2000] mentions that “...Qw being
linear in the features given on the righthand side may be the only way to satisfy this condition”.

3This proof is from David Sliver’s lecture slides, Lecture 7.

28

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

A Importance Sampling

Edited from my note for PSTAT 221B - ADV PROBILTY THEORY. Mainly included: the definition,
examples, and applications of importance sampling.

Notation Let P be any probability measure on the measurable space (Ω,F) and X : Ω → R be any
random variable. P(X) represents the expectation of X with respective to P.

Why do we need importance sampling? Let’s consider the traditional Monte Carlo method
used to estimate the expectation. Let V be a random variable. If y = P(V), then we call V is the
P-estimator of y. And define

V̂M =
1

M

M∑
j=1

V (j)

where V (j) are iid samples of V . Then V̂M is called the estimate of y. Obviously, it is unbiased; that
is, P(V̂M) = y. We consider a very rare event A and define V = 1A. Then the variance of estimator is
Var(V̂) = 1

MP(A)(1−P(A)). But its relative error√
P(A)(1−P(A))

MP(A)2

could be very large.

Definition A.1. Let P and Q be two measures on the measurable space (Ω,F). If for some non-negative
random variable Z with P(Z) = 1 such that

Q = ZP,

then it is called Q� P with Radon-Nikodym derivative Z.

Definition A.2 (Importance measures). Let Q� P with Radon-Nikodym derivative Z. If Z > 0 when
V 6= 0, then Q is called an importance measure.

Now let Y = LV be the Q-estimator of y for L =

{
1
Z if Z > 0

0 o.w.
.

ŷM =
1

M

M∑
j=1

Y (j)

where {Y (j)} are iid samples of Y .

Lemma A.3. Let Q∗ = Z∗P where Z∗ = |V |
P (|V |) provided P(|V |) < ∞. Then Q∗ minimizes the

variance over all importance measures Q.

Proof. Because Q(Y) = y for every importance measure Q, it suffices to prove Q∗ (Y 2
∗) ≤ Q(Y 2):

Q∗ (Y 2
∗) = Q∗ ((L∗V)2)

= P(Z∗(L∗V)2)

= P(V 2/Z∗)

where L∗ = 1
Z∗

1{Z∗>0}. Now consider Q = ZP for any Z such that Q is an importance measure. Then

Q∗ (Y 2
∗) = P(V 2/Z∗)

= Q(
V 2

Z∗
L)

= Q(
V 2

|V |
L)P(|V |)

= (Q(|V |L))2

≤ Q(L2V 2)

29

where we use Jensen’s inequality for the last inequality.

Corollary A.4. If V > 0, then Q∗-variance is 0.

Proof. Let Z = V/P(V). By the previous lemma, we have

Q∗ (Y 2) − y2 ≤ Q(V 2/Z2) − y2 = 0;

therefore, the Q∗-variance is 0.

Example A.5. Let Zθ = eθV−Λ(θ) where Λ(θ) = log P(eθV). Then we can define the importance
measure

Qθ = ZθP.

Take V ∼ Exp(1) under P. Then y = P(V) = 1 and P(V 2) = 2. First, we compute the distribution
of V under Qθ. Notice that for all θ < 1, Λ(θ) = − log(1− θ).
We want to prove V ∼ Exp(1− θ) for θ < 1 under Qθ. First, we notice

Mt = 1{V≤t} − t ∧ V.

is a martingale under P. Recall that for every Poisson process N with rate 1, Nt − t is a martingale;
and the first jumping time τ = inft{t > 0 : Nt > 0} is a stopping time with the distribution Exp(1).
Therefore, the P-martingale M is exactly the stopped martingale of Nt − t at τ .
Second, we apply the Girsanov theorem to this P-martingale M . We just learn that Mt = 1{V≤t}−t∧V
is a martingale with respect to its natural filtration Ft. And Z = (1 − θ)eθV is the Radon-Nikodym
density. It is easy to see that

Zt =
e−θ1V≤t+θt∧V

P(e−θ1V≤t+θt∧V)
.

Because Zt is a bounded martingale. Its a.s. limit Z∞ = eθV

P (eθV)
= Z. So by uniqueness, Zt = P(Z | Ft).

And notice that Zt solves
dZt = −θZt−dMt

with Z0 = 1 by applying the Itô’s formula. Then by Girsanov-Meyer theorem,

M̃t = Mt + θ〈M,M〉t

is a martingale under Q.
Third, we want to find the specific form of M̃ . It suffices to compute 〈M,M〉t. Using Theorem 28 in
Protter’s book, we find

[M,M]t =
∑
s≤t

(∆Ms)
2

= 1{V≤t};

〈M,M〉t = t ∧ V.

Finally, we get
M̃t = 1{V≤t} − t ∧ V + θt ∧ V ;

and from the equation above, the compensator of 1{V≤t} under Q is (1 − θ)t ∧ V . It implies that
V ∼ Exp(1− θ).
Now we get the distribution of V under Qθ. Then it is easy to compute the Qθ-variance of Y .

Qθ(Y
2) = Qθ(e

−2θV+2Λ(θ)V 2)

=

{
2

(1−θ)(1+θ)3 −1 < θ < 1

∞ o.w.
.

Simulation. First, for each θ from −0.99 to 0.99, we sample 1000 random numbers from V under Qθ.
Second, we compute the variance of each estimator of Y = V/Z; and plot it. We can notice that the
variance is minimized at around 0.5. Moreover, the importance sample has lower variance.

30

Figure 1: Var. is minimized around 0.5 Figure 2: IS reduces the variance

Example A.6. Take V ∼ Exp(n) under P. Now Λ(θ) = log(n
n−θ) for θ < n and

Qθ (V ≤ t) = P(1{V≤t}Z)

=

∫
1{V≤t} · eθV−Λ(θ)dP

=

∫ t

0

(n− θ)e−(n−θ)xdx

so V ∼ Exp(n− θ) under Qθ. And

Qθ(Y
2) =

2n2

(n− θ)(n+ θ)3
.

It is easy to see that it is minimized by θ = n
2 .

Example A.7. Now we consider the rare event {Vn ≥ t} for a fixed t. Under P we have P(Vn ≥ t) =
e−nt → 0 as n ↑ ∞. Let Xt = 1{Vn≥t}. Then

P(X2) = P(X) = e−nt.

Using the same Radon-Nikodym density Zθ defined in the previous example, the distribution of Vn under
Qθ is Exp(n− θ). Then we sample X under Qθ and use Y = X/Zθ as the Qθ-estimator of P(X). It is
easy to see that

Qθ (Y 2) = Qθ (1{Vn≥t} · e
−2θVn+2Λ(θ)) =

2n

n+ θ
e−(n+θ)t.

Moreover, VarQθ
(Y) is a decreasing function in θ on (0, n). And we can notice that if θ = kn for some

k ∈ (0, 1),
Qθ (Y 2)

P(X2)
=

2n

n+ θ
e−θt → 0

as n ↑ ∞. It means when n is very large, the importance sampling method will perform much better
than the traditional Monte Carlo estimate.

Let {Xn} be iid sequence of real-valued random variables, and Sn =
∑n
i=1Xi. Set

Z = eθSn−nΛ(θ)

where Λ(θ) = log P(eθX1). Then we have the importance measure Qθ = ZP. Let Yn be the Q-estimator
of yn (Yn → 0 as n ↑ ∞).

Definition A.8. Yn has vanishing relative error (VRE) if

lim
n→∞

Q(Y 2
n)

y2
n

→ 1.

31

Definition A.9. Yn has bounded relative error (BRE) if

lim sup
n↑∞

Q(Y 2
n)

y2
n

<∞.

Definition A.10. Yn is logarithmically efficient (LE) if

lim inf
n↑∞

log Q(Y 2
n)

log(y2
n)

= 1.

Example A.11. Let Mn be the number of trails. And for per fixed precision it is of order y2
n; that is

Mn = oy2
n for some constant o. Assume

δ2 =
VarQ (Yn)

Mn
.

Take log on both sides:

log(δ2 +
1

o
) = log Q(Y 2

n) − logMn.

Then we divide log y2
n:

log(oδ2 + 1)

log y2
n

=
log Q(Y 2

n)

log y2
n

− 1.

Finally, we get

lim
n↑∞

log Q(Y 2
n)

log y2
n

= 1;

it implies Yn has logarithmical efficiency.

Lemma A.12. If there exists γ > 0 such that the following two conditions hold

lim sup
n↑∞

1

n
log Q(Y 2

n) ≤ −2γ (UB)

lim inf
n↑∞

1

n
log Q(Yn) ≥ −γ (LB)

Then Yn is logarithmically efficient.

Proof. It is easy to see that
log Q (Y 2

n)
log (y2n) ≤ 1 by using Jensen’s inequality for the convex function x 7→ x2.

And applying UB and LB conditions, we have

lim inf
n↑∞

log Q(Y 2
n)

2 log(yn)
≤

lim supn↑∞ log Q(Y 2
n)

2 lim infn↑∞ log Q(Yn)

≤ −2γ

−2γ
= 1.

Lemma A.13. 1) Λ and Λ∗ are convex functions.

2) Λ∗ (x) = 0 if x := P(X1) is finite.

3) If Λ(λ) <∞ for any λ > 0, then for all z ≥ x,

Λ∗ (z) = sup
λ≥0
{λz − Λ(λ)}

is a non-decreasing function in z.

32

Proof. 1) Recall that Λ(θ) := log P(eθX). For α ∈ [0, 1], by Holder’s inequality,

Λ(αθ1 + (1− α)θ2) = log P(eαθ1 · e(1−α)θ2)

≤ log
(
P(eθ1)α ·P(e(1−α)θ2) (1−α)

)
= αΛ(θ1) + (1− α)Λ(θ2) .

And every Legendre transform of convex function is also convex:

Λ∗ (αz1 + (1− α)z2) = sup
λ≥0
{λαz1 − αΛ(λ) + λ(1− α)z2 − (1− α)Λ(λ)}

≤ αΛ∗ (z1) + (1− α)Λ∗ (z2)

2) First, we notice that

Λ′(λ) =
1

P(EλX)
P(XeλX);

so x − Λ′(0) = 0. It is equivalent to say λ = 0 maximize the concave function λ 7→ λx − Λ(λ).
Therefore,

Λ∗(x) = sup
λ

(
λx− Λ(λ)

)
= 0.

3) Let z ≥ x. Because λ > 0,

λx− Λ(λ) ≤ λz − Λ(λ) .

Then we take sup on both sides:

Λ∗ (x) ≤ Λ∗ (z) .

Now we consider the rare event {Sn/n > β} for β > P(X1). When n→∞, by the central limit theorem,
its probability will tends to 0. The following theorem says, if we apply importance sampling method for
its indicator, we will have logarithmic efficiency.

Theorem A.14. Y = 1{Sn/n>β}e
−θSn+nΛ(θ) is logarithmically efficient.

Proof. To prove LE, it suffices to check (UB) and (LB) conditions:

lim sup
n↑∞

1

n
log Q(Y 2

n) ≤ −2γ

lim inf
n↑∞

1

n
log Q(Yn) ≥ −γ

For the (UB) condition, use Jensen’s inequality:

lim sup
n↑∞

1

n
log Qθ(Y

2
n) = lim sup

n↑∞

1

n
log Qθ (e−2θSn+2nΛ(θ) 1{Sn/n>β})

≤ −2θβ + 2Λ(θ) + lim sup
n↑∞

1

n
log Qθ (Sn/n > β)

≤ −2θβ + 2Λ(θ)

Then we take supθ≥0 on both sides:

lim sup
n↑∞

1

n
log Qθ(Y

2
n) ≤ −2 sup

θ≥0
{θβ − Λ(θ)} = −2Λ∗ (β)

33

Recall that by the Cramer’s theorem, {Sn/n} obeys the large deviation principle in R with the good
rate function Λ∗. That is, for any open set G ⊂ R

lim inf
n↑∞

1

n
log P(Sn/n ∈ G) ≥ − inf

z∈G
Λ∗(z).

Therefore, for (LB) condition,

lim inf
n↑∞

1

n
log Q(Yn) = lim inf

n↑∞

1

n
log P(Sn/n > β)

≥ − inf
z>β

Λ∗ (z)

= −Λ∗ (β)

For the last equality, we use the monotonicity of Λ∗ proven in the previous lemma.

34

B Dynamical Systems

See [Brin and Stuck, 2002] and this slides for more details. For any set X and a family of maps {f} :=
{f(t) : X → X}t∈[0,+∞), if {f} forms a semi-group w.r.t. the operation ◦ (i.e. f(t) ◦ f(s) = f(t + s)
and f(0) = 1X), then (X, {f}) is called a (continuous-time) dynamical system; sometimes, it is called a
semi-flow.

Now let’s consider the connection between the dynamical systems and differential equations.

• From ODE to the dynamical system.

Suppose we have a smooth and compact-supported function F : Rn → Rn and x : [0,+∞)→ Rn,
then

d

dt
x(t) = F (x(t))

defines a differential equation. For convenience, we write it as

ẋ = F (x).

Solutions for this equation defines an action of [0,+∞) on Rd as following: Let ϕ(x0, t) be the
unique solution for this equation with initial point x0 (Picard–Lindelöf Theorem). For t = 0,

ϕ(·, 0) : Rd → Rd

x0 7→ x0

is an identity map on Rn; for t, s ∈ [0,+∞),

ϕ(ϕ(·, s), t) : Rd → Rd

x0 7→ ϕ(x0, s+ t).

Then define f(t) := ϕ(·, t); it forms a semi-group action on Rn.

• From the dynamical system to ODE.

Now we have a semi-flow {f(t) : Rd → Rd}t∈[0,+∞). Assume (x, t) 7→ ϕ(x, t) := f(t)(x) defines a

smooth map from Rd × [0,+∞)→ Rd. Then ϕ is the solution to the following ODE

ẋ =
d

dt
ϕ(x, 0).

Due to the deep connection between the dynamical systems and differential equations, we simply call
any ODE of form ẋ = F (x) as a (time-invariant) system in this note. And an orbit (or a trajectory) of
this system is the orbit of semi-group action,

Orbit(x) := {f(t)(x) : t ∈ [0,+∞)};

for convenience, we denote is by x(t).

Definition B.1. Let ẋ = F (x) be any time-invariant system.

• xe ∈ Rn is an equilibrium point of this system if F (xe) = 0.

• The system ẋ = F (x) is called Lyapunov stable at xe if for every ε > 0 there exists δ > 0 such that
if ‖x(0)− xe‖ < δ then

‖x(t)− xe‖ < ε

holds for all t > 0.

• The system ẋ = F (x) is called asymptotically stable at xe if if it is Lyapunov stable at xe and there
exists δ > 0 such that if ‖x(0)− xe‖ < δ, then

x(t)→ xe

as t→∞.

35

https://stanford.edu/class/ee363/lectures/lyap.pdf
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem

• The system ẋ = F (x) is called exponentially stable at xe if it is asymptotically stable at xe and
there exist α > 0, β > 0 and δ > 0 such that if ‖x(0)− xe‖ < δ then

‖x(t)− xe‖ < α‖x(0)− xe‖e−βt

holds for all t > 0.

For convenience, we take a shift x 7→ x− xe such that 0 is the equilibrium point.

The following theorem is usually called the Lyapunov global asymptotic stability theorem; it could be
extended to the time-varying systems.

Theorem B.2. Given a time-invariant system ẋ = F (x). Suppose there is a continuously differentiable
function V : Rn → R such that

• V is positive definite; that is,

◦ V (z) ≥ 0 for all z.

◦ V (z) = 0 if and only if z = 0.

◦ V is coercive; that is all sub-level sets of V are bounded.

• V̇ (t) < 0 for all t > 0, where V̇ := d
dtV (x(t)).

Then every trajectory of ẋ = F (x) converges to 0 as t→∞.

Proof. Suppose there exists x(t) 6→ 0 as t → ∞. Because V̇ < 0 for t 6= 0, V (x(t)) is decreasing and V
is non-negative (bounded below by 0), it converges to ε > 0 as t→∞. So we have

0 < ε ≤ V (x(t)) ≤ V (x(0))

holds for all t > 0. By the coercivity of V ,

C := {z ∈ Rn : ε ≤ V (z) ≤ V (x(0))}

is compact (in general, closed bounded set may not be compact (see here); fortunately, the domain of V
is the Euclidean space Rd). Because we have assumed everything is smooth,

sup
z∈C

V̇ = sup
z∈C
〈∇V (z), F (z)〉 = −a < 0.

Then since the trajectory x(t) is contained in C, we have

V̇ (x(t)) ≤ −a.

Then because

V (x(T))− V (x(0)) =

∫ T

0

V̇ (x(t))dt ≤ −aT,

we have for T > V (x(0))
a , V (x(T)) < 0. Contradiction.

The following result doesn’t require V̇ strictly less than 0, but it cannot be generalized to time-varying
systems. Its proof is beyond this note so omitted.

Theorem B.3 (Lasalle). Given a time-invariant system ẋ = F (x). Suppose there is a function
V : Rn → R such that

• V is positive definite.

• V̇ (t) ≤ 0.

• The solution to ẋ = F (x) with V̇ = 0 is x(t) = 0 for all t.

36

http://mathonline.wikidot.com/compact-sets-in-a-metric-space-are-closed-and-bounded

Then every trajectory of ẋ = F (x) converges to 0 as t→∞.

We have the following strategies to analyze the properties of trajectories:

a) Select a positive definite function V : Rd → R as the Lyapunov function candidate.

b) Evaluate V̇ for every trajectory of the given system.

c) Check the stability theorem conditions; pass means V is the desired Lyapunov function.

d) If fails, go back to the step (a).

It could be tricky to choose an appropriate V in some cases.

37

References

[Agarwal et al., 2019] Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2019). Optimal-
ity and approximation with policy gradient methods in markov decision processes. arXiv preprint
arXiv:1908.00261.

[Brin and Stuck, 2002] Brin, M. and Stuck, G. (2002). Introduction to dynamical systems. Cambridge
university press.

[Li, 2018] Li, Y. (2018). Deep reinforcement learning. arXiv preprint arXiv:1810.06339.

[Melo et al., 2008] Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008). An analysis of reinforcement
learning with function approximation. In Proceedings of the 25th international conference on Machine
learning, pages 664–671. ACM.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An
introduction. MIT press.

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy
gradient methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063.

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from delayed rewards.

[Weng, 2018] Weng, L. (2018). Policy gradient algorithms. lilianweng.github.io/lil-log.

38

	Markov Decision Process (MDP)
	Markov Decision Process
	Bellman Equation

	Dynamic Programming (DP)
	Prediction: Policy Evaluation
	Control: Policy Iteration
	Control: Value Iteration

	Model-Free Prediction
	Monte-Carlo Policy Evaluation
	Temporal Difference (TD) Prediction
	Comparison: MC vs. TD

	Model-Free Control
	On-Policy Monte-Carlo Control
	On-Policy TD Control
	Applications of Importance Sampling in Off-Policy Learning
	Q-learning

	Function Approximation
	Prediction with Linear Approximation
	Control with Linear Approximation

	Policy Gradient
	Policy Gradient Theorem
	REINFORCE: Monte Carlo Policy Gradient
	Actor-Critic Policy Gradient

	Importance Sampling
	Dynamical Systems

