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My Ph.D. Work

Efficient and Resilient Algorithms for Stochastic Optimization
(1) Efficient Stochastic Optimization with Random Reshuffling
(2) Resilient Stochastic Optimization over Dependent Data

Efficient and Resilient Algorithms for Reinforcement Learning
(3) Variance-Reduced Off-Policy Algorithms
(4) Robust Reinforcement Learning with Model Uncertainty
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(1) Motivation of Studying Random Reshuffling

“Although the theory calls for picking examples randomly, it is usu-
ally faster to zip sequentially through the training set.” 1

from torch . u t i l s . data import DataLoader , RandomSampler

# Random Reshuf f l ing ( by de fau l t )
dataloader = DataLoader ( dataset , batch_s ize = 1 )

# Uniform Sampling
dataloader = DataLoader ( dataset , batch_s ize = 1 ,

shu f f l e =RandomSampler , shu f f l e = False )

Shuffling has been widely implemented in Tensorflow and Pytorch!

1L. Bottou. Stochastic Gradient Descent Tricks. In Neural networks: Tricks of the trade, pages 421–436. Springer, 2012.
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(1) Efficient Stochastic Optimization with Random Reshuffling

Previous work on SGD with random reshuffling:
• Only in-expectation convergence guarantees.
• Cannot cover non-convex scenarios.

Empirical loss optimization:

min
θ∈Rd

1
n

n∑
i=1

ℓi(θ).

SGD with random reshuffling: Let (1, 2, . . . ,n) 7→ (σ1, σ2, . . . , σn) be a
random permutation.

θk+1 = θk − η∇ℓσk(θk).

Our contributions:
• {θk} has a unique limit point under over-parameterization.
• Theoretical frameworks for non-convex objectives (quasi-strongly convex).
• Theoretically explain why Random Reshuffling is better.
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2Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle. ICML 2020.
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(2) Resilient Stochastic Optimization over Dependent Data

Many real-world applications need to handle the dependent data.

Asset price (e.g. stock price, defaultable bond, ...)
Reinforcement learning
Online recommendation system
...

Example from RL:
The trajectory of RL usually forms a
Markov chain in the left figure. Each
green arrow represents the agent’s
state at a given time. Traditional opti-
mization theory usually cannot explic-
itly characterize the impact of data de-
pendence in the upper bound.

4



(2) Resilient Stochastic Optimization over Dependent Data

Expected loss minimization:

min
θ∈Rd

Eξ∼µf(θ; ξ).

Data is generated from a stochastic process: {ξk}; P(ξk ∈ ·)→ µ.

Previous work on online SGD:
• Geometric mixing data.
• Naive SGD. Unstable due to data dependency.

Our contributions:
SGD with sub-sampling: θk+1 = θk − η∇f(θk; ξτk).
Mini-batch SGD: θk+1 = θk − η

∑B−1
i=0 ∇f(θk; ξkB+i).

• Arbitrary mixing data.
• More robust w.r.t. dependent data.
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3Data Sampling Affects the Complexity of Online SGD over Dependent Data. UAI 2022.
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My Ph.D. Work

Efficient and Resilient Algorithms for Stochastic Optimization
(1) Efficient Stochastic Optimization with Random Reshuffling
(2) Resilient Stochastic Optimization over Dependent Data

Efficient and Resilient Algorithms for Reinforcement Learning
(3) Variance-Reduced Off-Policy Algorithms
(4) Robust Reinforcement Learning with Model Uncertainty
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(3) Motivation of Using Variance Reduction

Figure 1: Illustration of trajectories of SGD algorithm (left) and SVRG algorithm
(right) for minimizing f(x, y) = Eξ,ζ∼N(0,1)[(x− ξ)2 + (y− ζ)2]. The low-variance
algorithm has much smaller variance near the optimal point (0, 0) and performs
much more stable.
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(3) Variance-Reduced Off-Policy Algorithm for Policy Evaluation

Off-Policy Policy Evaluation:

MSPBE(θ) = Eµb‖V̂θ − ΠRθTπV̂θ‖2.

(Off-Policy TDC)
{
θt+1 = θt + α(Atθt + bt + Btωt),
ωt+1 = ωt + β(Atθt + bt + Ctωt).

Previous work on TDC:
• Convergence suffers from a large variance.
• Two-time scale + Markovian sample: no appropriate solution

Our contributions:
• Variance reduction for two-time scale algorithm over Markovian samples.
• Best-known sample complexity.

8



(3) Variance-Reduced Off-Policy Algorithm for Policy Evaluation

Off-Policy Policy Evaluation:

MSPBE(θ) = Eµb‖V̂θ − ΠRθTπV̂θ‖2.

(Off-Policy TDC)
{
θt+1 = θt + α(Atθt + bt + Btωt),
ωt+1 = ωt + β(Atθt + bt + Ctωt).

Previous work on TDC:
• Convergence suffers from a large variance.
• Two-time scale + Markovian sample: no appropriate solution

Our contributions:
• Variance reduction for two-time scale algorithm over Markovian samples.
• Best-known sample complexity.

8



(3) Variance-Reduced Off-Policy Algorithm for Policy Evaluation

Off-Policy Policy Evaluation:

MSPBE(θ) = Eµb‖V̂θ − ΠRθTπV̂θ‖2.

(Off-Policy TDC)
{
θt+1 = θt + α(Atθt + bt + Btωt),
ωt+1 = ωt + β(Atθt + bt + Ctωt).

Previous work on TDC:
• Convergence suffers from a large variance.
• Two-time scale + Markovian sample: no appropriate solution

Our contributions4:
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4Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence Analysis. NeurIPS 2020.
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(3) Variance-Reduced Algorithm for Optimal Control

Off-Policy Optimal Control:

MSPBE(θ) = Eµb‖Qθ − ΠTπθQθ‖2.

(Greedy-GQ)


θt+1 = θt − ηθ

(
−δt+1 (θt)ϕt + γ

(
ω⊤
t ϕt

)
ϕ̂t+1 (θt)

)
,

ωt+1 = ωt − ηω
(
ϕ⊤
t ωt − δt+1 (θt)

)
ϕt,

πθt+1 = P(ϕ⊤θt+1).

Previous work on Greedy-GQ:
• Convergence suffers from a large variance.
• Two-time scale + Markovian sample + Non-convex objectives

Our contributions:
• Improved sample complexity from O(ϵ−3) to O(ϵ−2).
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5Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved Complexity. ICLR 2021.
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(4) Motivation of Considering Model Uncertainty

Figure 2: An UAV system with 5 drones.

What kinds of RL algorithms do we need?

Noises from environments: resilience.
Cannot communicate with the ground station: decentralization.
Different tasks for different UAV: a general-sum stochastic game.
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(4) Robust V-Learning for Markov Games with Model Uncertainty

Previous work:
• Aim to find robust NE, a PPAD-complete problem. (open)

Robust CE: for any player j, any stochastic modification ϕ(j), any s ∈ S ,

V(j)π,1(s) ≥ V
(j)
π̃(j)×π(\j),1(s)

Our contributions:
• Propose Robust Correlated Equilibrium for robust Markov games.
• Propose Robust V-Learning to find Robust Correlated Equilibrium.
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6Decentralized Robust V-Learning for Solving Markov Games with Model Uncertainty. JMLR 2023.
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(4) Robust Policy Optimization with Model Uncertainty

Real-world applications require resilient algorithms:

Autonomous vehicle
Robotics
Healthcare
Trading algorithm
...

12



(4) Robust Policy Optimization with Model Uncertainty

Worst-case value function:

Vπu (s) := E
[ ∞∑
t=0

γtr(st) | s0 = s,Pu, π
]
,

Vπ(s) := min
u
Vπu (s).

Goal to find the optimal policy in the worst-case senario:

π∗ = argmax Vπ(s)

Our contributions:
• Monotonic policy improvement in the worst-case scenario.
• Theoretical convergence guarantees to an optimal policy.
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Resilient Stochastic Optimization over Dependent Data
(UAI 2022)
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Expected Loss Optimization

Expected loss optimization:

min
w∈W

f(w) := Eξ∼µ[F(w; ξ)].

In practice, the data often cannot be directly sampled from the
distribution µ. Instead, it comes from a stochastic process which

limiting distribution is µ.
Broad applications in machine learning:

• Optimization theory
• Portfolio optimization
• Reinforcement learning
• Quantitative trading
• ...

15



Example from Real World: Reinforcement Learning

Example (Reinforcement Learning)

The data point (st,at, rt, st+1) in RL comes
from a trajectory:

s1,a1, r1, s2,a2, r2, . . .

Not ind. + Non-identical distribution. Figure 3: Agent-Environment
Interaction
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Example from Real World: Portfolio optimization

Example (Portfolio optimization)
Given n assets. Build a long-term portfolio w such that

Var := wTΣw

is minimized (Σ is the covariance matrix of asset prices).

Data process: Daily estimated covariance matrix based on pre-processed
daily asset returns: {Σ1,Σ2, . . . }

SGD update: w← w− η · (Σi +ΣT
i )w.

Biased gradient: EΣi 6= EΣ∼ΞΣ.

Data dependence: EΣiΣj 6= EΣiEΣj.

17



Motivation: Robust Algorithm for Dependent Data Processes

Previous work on dependent data:
• Strong geometric mixing assumption.
• Weak in-expectation convergence guarantees.
• The performance of SGD is significantly affected by data dependency.

Our analysis for SGD algorithm:
• Arbitrary mixing assumption.
• Strong high-probability convergence guarantees.
• Propose multiple methods to reduce the impact of data dependency.

18



Characterization of Data Dependency

Characterization of Data Dependency:

We use the mixing coefficient to measure the data dependency.

Definition
{ξt}t: a process with a stationary distribution µ.
P(ξt+k ∈ ·|Ft): the dist. of ξt+k cond. on Ft.
dTV: the total variation distance.

The process {ξt}t is called ϕ-mixing if

ϕ(k)︸︷︷︸
mixing coef.

:= sup
t∈N,A∈Ft

2dTV
(
P(ξt+k ∈ ·|A), µ

)
→ 0,

as k→∞.
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Assumptions

min
w∈W

f(w) := Eξ∼µ[F(w; ξ)].

Assumptions
For every ξ, function F(·, ξ) is G-Lipschitz continuous over the domain
W .
Function f(·) is convex and bounded below, i.e.
f(w∗) := infw∈W f(w) > −∞.
W is convex and compact with bounded diameter R.
There is a non-increasing sequence {κ(t)}t such that
‖w(t+ 1)− w(t)‖ ≤ κ(t).

20



Online SGD Algorithms

Naive SGD:

w(t+ 1) = w(t)− ηt∇F(w(t); ξt).

Sub-sampling SGD:

w(t+ 1) = w(t)− ηt∇F(w(t); ξtr+1).

Mini-batch SGD:

w(t+ 1) = w(t)− ηt
B
∑
ξ∈xt

∇F(w(t); ξ).

Data dependence model ϕξ(k) SGD SGD w/ subsampling Mini-batch SGD

Geometric ϕ-mixing exp(−kθ),
O(ϵ−2(log ϵ−1) 2

θ ) O(ϵ−2(log ϵ−1) 1
θ ) O(ϵ−2)(Weakly dependent) θ > 0

Fast algebraic ϕ-mixing k−θ,
O(ϵ−2− 2

θ ) O(ϵ−2− 1
θ ) Õ(ϵ−2)(Medium dependent) θ ≥ 1

Slow algebraic ϕ-mixing k−θ,
O(ϵ−2− 2

θ ) O(ϵ−2− 1
θ ) O(ϵ−1− 1

θ )(Highly dependent) 0 < θ < 1

21



Convergence of Sub-Sampling SGD

Theorem

f(ŵn)− f(w∗) ≤ O
( 1√

n
+ inf

τ∈N

{ (τ − 1)√
n

+

√
τ

n log
τ

δ
+ ϕ(rτ)

}
︸ ︷︷ ︸

Err. caused by data dependence

)
.

Geometric ϕ-mixing data:
Sample complexity is rn = O

(
ϵ−2(log 1

ϵ )
1
θ

)
.

Algebraic ϕ-mixing data:
Sample complexity is rn = O

(
ϵ−2−

1
θ

)
.
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Convergence of Mini-Batch SGD

Theorem

f(ŵn)− f(w∗) ≤ Õ
(√∑n

j=1 ϕ(j)
nB +

GR(τ − 1)
n

+
1
nB

B∑
i=1

ϕ(τB+ i) +
√

τ

nB

(
B− 1

4 +
[ B∑
i=1

ϕ(i)
] 1
4
))

.

Geometric ϕ-mixing data:
Sample complexity is nB = O

(
ϵ−2(log 1

ϵ )
1
θ

)
.

Fast algebraic ϕ-mixing data:
Sample complexity is nB = Õ

(
ϵ−2

)
.

Slow algebraic ϕ-mixing data:
Sample complexity is nB = O

(
ϵ−1−

1
θ

)
.
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Robust V-Learning for Markov Games with Model Uncertainty
(JMLR 2023)
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Robust Markov Games

Broad applications in machine learning:
• Game theory
• Insurance
• Portfolio optimization
• Multi-UAV systems
• ...

Robust Value Function

V(j)π,h(s) := inf
P̃∈P

E
[ H∑

ℓ=h

r(j)ℓ (sℓ,aℓ)
∣∣∣sh = s, π, P̃

]
.

25



Real-World Example: Insurance

Example
A specific insurance policy costs $1.

If a covered event occurs (e.g., a disease outbreak, death, etc.), the
policy pays out $2.
If the event does not occur, the $1 spent on buying the policy is lost.

Question: Given that the probability of the insured event happening is
extremely low, is it rational to purchase this insurance policy?

The worst case: the covered event occurs.

26



Robust NE

Definition (Robust Nash Equilibrium)
A joint policy π is called a robust NE if

(i) for all h, πh is a product policy;
(ii) for any player j with any policy π̃(j), we have V(j)π,1(s) ≥ V

(j)
π̃(j)×π(\j),1(s) for

all s ∈ S .

Solving the NE of a general-sum multi-player game is PPAD-complete.
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Robust CE

Definition (Robust Correlated Equilibrium)
A joint policy π is called a robust CE if for any player j and any stochastic
modification ϕ(j), it holds that V(j)π,1(s) ≥ V

(j)
ϕ(j)◦π,1(s) for all states s ∈ S .

There are many algorithms solving the CE of a general-sum multi-player
game in polynomial time.
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Fundamental Properties of Robust CE

Propositions
1. Any robust NE is a robust CE.
2. There exists a robust CE which is not a robust NE.

Figure 4: For any p ∈ ( 1029 ,
1
2 ), there are two robust NE: π1(a = [0, 1]|s = s4) = 1 and

π1(a = [1, 0]|s = s4) = 1 (π2 can be arbitrary). Any convex combination of these two
policies is a robust CE but not robust NE.
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Decentralized Robust V-Learning

At the h-step of an episode:

Each agent takes its action a(j)h . Transfer to the next state to sh+1.

Receive reward r(j)h and set t := N(j)
k+1,h(sh)← N(j)

k,h(sh) + 1

Let Ṽ(j)k+1,h ← Ṽ(j)k,h, V
(j)
k+1,h ← V(j)k,h, π

(j)
k+1,h ← π

(j)
k,h.

Ṽ(j)k+1,h(sh) =(1− αt)Ṽ(j)k,h(sh) + αt

(
r(j)h + σ̂Ph(sh,ah)(V

(j)
k,h+1) + β

(j)
t

)
V(j)k+1,h(sh) =min{H+ 1− h, Ṽ(j)k+1,h(sh)}

π
(j)
k+1,h(·|sh)=ADV_BANDIT

(
t,ah, 1−

r(j)h +σ̂Ph(sh,ah)(V
(j)
k,h+1)

H , π
(j)
k,h(·|sh)

)
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Definition and Assumptions

Uncertainty diameter:

D := max
h,s,a,a′

max
P∈Ph(s,a),P̃∈Ph(s,a′)

‖P(·)− P̃(·)‖∞.

Estimation error:

e := sup
h,s,a,V

∣∣σPh(s,a)(V)− σ̂Ph(s,a)(V)
∣∣,

where the supremum is taken over all bounded value tables that
satisfy 0 ≤ V(s) ≤ H+ 1 for all s.
State exploration:

pmin := min
s,h,k

P(sk,h = s),

which denotes the minimum probability of visiting an arbitrary state s
at any step h of any episode k.
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Decentralized Robust V-Learning (Small Uncertainty Set)

Theorem
For any D ≥ 0,

max
j∈[J]

max
s∈S

(
V(j)ϕ∗◦π̂,1(s)− V

(j)
π̂,1(s)

)
≤5DSH2 +O

(
H
(
A
√
H3S
K ln

mKHSA2
δ

+ e
))

.

If the uncertainty diameter D ≤ ϵ
SH2 and the approximation error e = O(

ϵ
H ),

the ϵ-accuracy is guaranteed with K = Õ(SA2H5ϵ−2) episodes.
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Decentralized Robust V-Learning (Sufficient Exploration)

Theorem
For any D and pmin satisfying ϵ

SH2 ≤ D < pmin

H ,

max
j∈[J]

max
s∈S

(
V(j)ϕ∗◦π̂,1(s)− V

(j)
π̂,1(s)

)
≤ O

( H
pmin − DH

(
A
√
H3S
K ln

mKHSA2
δ

+ e
))

.

If the state exploration pmin > ϵ
SH and the approximation error e = O(

ϵpmin

H ),

the ϵ-accuracy is guaranteed with K = Õ(SA2H5p−2minϵ
−2) episodes.
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Variance-Reduced Greedy-GQ Algorithm for Optimal Control
(ICLR 2021)
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Optimal Control

Broad applications in machine learning:
• Robotic control
• Recommendation systems
• Large language model
• ...

V-function (the state value function):

Vπ(s) = E
[ ∞∑
t=0

γtrt|s0 = s
]
.

Q-function (the action-state value function):

Qπ(s,a) = Es′∼P(·|s,a) [r(s,a, s′) + γVπ(s′)] .

Optimal control:
π∗ = argmaxQπ(s0,a0).
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Optimal Control

Bellman operator Tπ :

TπQ(s,a) = Es′,a′ [r(s,a, s′) + γQ(s′,a′)].

Value iteration algorithm:

(Tπ)n Q→ Q∗.

Exact TπQ is hard to obtain with function approximation.
Mean Squared Projected Bellman Error (MSPBE):

J(θ) := 1
2‖ΠT

πθQθ − Qθ‖2µs,a ,

36



Motivation:

A single sample xt = (st,at, rt, st+1).
Greedy-GQ:

θt+1 = θt − ηθ
(
− δt+1(θt)ϕt + γ(ω⊤

t ϕt)ϕ̂t+1(θt)
)
,

ωt+1 = ωt − ηω
(
ϕ⊤
t ωt − δt+1(θt)

)
ϕt,

πθt+1 = P(ϕ⊤θt+1).

Can we develop the variance reduction for Greedy-GQ?
Challenges:

• Two-time scale.
• Non-convex.
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VR-Greedy-GQ Algorithm

Gradient given a single sample:

Gxt(θ, ω) := −δt+1(θ)ϕt + γ(ω⊤ϕt)ϕ̂t+1(θ),

Hxt(θ, ω) :=
(
ϕ⊤
t ω − δt+1(θ)

)
ϕt.

Gradient over a batch:

G̃(m) =
1
M

mM−1∑
k=(m−1)M

Gxk(θ̃(m), ω̃(m)), H̃(m) =
1
M

mM−1∑
k=(m−1)M

Hxk(θ̃(m), ω̃(m)).

VR-Greedy-GQ:

θ
(m)
t+1 = ΠR

[
θ
(m)
t − ηθ

(
G(m)
t (θ

(m)
t , ω

(m)
t )− G(m)

t (θ̃(m), ω̃(m)) + G̃(m)
)]

ω
(m)
t+1 = ΠR

[
ω
(m)
t − ηω

(
H(m)
t (θ

(m)
t , ω

(m)
t )− H(m)

t (θ̃(m), ω̃(m)) + H̃(m)
)]

Policy improvement : π
θ
(m)
t+1
← P(ϕ⊤θ

(m)
t+1 ).
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VR-Greedy-GQ Algorithm: Contributions

Finite-time convergence analysis:
Two-time scale + Markovian sample + Non-convex objectives.

Improved sample complexity from O(ϵ−3) to O(ϵ−2).
Novel two-time scale variance reduction structure.
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Assumptions

Feature boundedness
The feature vectors are uniformly bounded, i.e., ‖ϕs,a‖ ≤ 1 for all
(s,a) ∈ S ×A.
Policy smoothness
The mapping θ 7→ πθ is k1-Lipschitz and k2-smooth.
Problem solvability
The matrix C := E[ϕs,aϕ⊤

s,a] is non-singular.
Geometric uniform ergodicity
There exists Λ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st|s0 = s), µ

)
≤ Λρt,

for any t > 0, where dTV is the total-variation distance.
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Convergence Analysis

Theorem

E‖∇J(θ(ζ)ξ )‖2 ≤ O
( 1
ηθTM

+
1
T
(
ηω +

η2θ
η2ω

)
+
(
ηω +

η2θ
η2ω

)2
+
1
M

)
,

Set ηθ = O( 1M ), ηω = O(η2/3θ ), and set T,M = O(ϵ−1).

Sample complexity for achieving E‖∇J(θ(ζ)ξ )‖2 ≤ ϵ is TM = O(ϵ−2).
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Experiments

Figure 5: Comparison of Greedy-GQ and VR-Greedy-GQ in solving the Frozen Lake
problem.
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Future Directions
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Future Directions

Robust Policy Gradient algorithm (New, under review of JMLR).
• Maximize the worst-case expected reward:

max
π

min
u
Vπu (s) := E

[ ∞∑
t=0

γtr(st) | s0 = s, Pu, π
]
.

• The agent is robust against the environment change (e.g. the transition
kernel Pu)

• We propose Robust Conservative Policy Iteration:
Iteration complexity O( 1

1−γ
1
ϵ2
),

Sample complexity: O(ϵ−5).
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Future Directions

Zeroth-Order Optimization (New, under review of TMLR).
• Minimize the hybrid loss with external parameters:

min
θ,Mcoarse

1
n

n∑
i=1

L
(
NNθ(Mfine,Oicoarse),Oifine

)
,

• Mcoarse is the non-auto-differentiable external parameter.
• We estimate a part of gradient:

∂L
∂Mcoarse

=
∂L

∂Ocoarse
· ∂Ocoarse

∂Mcoarse︸ ︷︷ ︸
Grad. Estimation.

.
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Thank You!
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